Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kha Phạm

Cho Tam giác ABC vuông tại A, BM là tia phân giác. Vẽ MH vuông góc BC, MH cắt AB tại e

a) chứng minh tam giác ABM = tam giác HBM

b)so sánh AM và CM

c)chứng minh BM vuông góc EC

Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 20:57

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có 

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

b: Ta có: ΔABM=ΔHBM

nên AM=HM

mà HM<CM

nên AM<CM

c:

Ta có: ΔBAM=ΔBHM

nên BA=BH

Xét ΔAME vuông tại A và ΔHMC vuông tại H có

MA=MH

\(\widehat{AME}=\widehat{HMC}\)

Do đó: ΔAME=ΔHMC

Suy ra: ME=MC và AE=HC

Ta có: BA+AE=BE

BH+HC=BC

mà BA=BH

và AE=HC

nên BE=BC

Ta có: BE=BC

nên B nằm trên đường trung trực của EC\(\left(1\right)\)

Ta có: ME=MC

nên M nằm trên đường trung trực của EC\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BM là đường trung trực của EC

hay BM\(\perp\)EC

Phía sau một cô gái
18 tháng 8 2021 lúc 21:03

a)  Xét △ ABM và △ HBM có: 

     \(\widehat{BAM}=\widehat{BHM}=90^0\) 

            BM chung

 \(\widehat{ABM}=\widehat{HBM}\) ( BM phân giác của \(\widehat{B}\) )

⇒ △ ABM = △ HBM ( ch - gn )

b) Vì △ ABM = △ HBM ( cmt )

⇒ AM = HM ( 2 cạnh tương ứng )

△ AME = ▲ CMH ( g - c - g )

⇒ AM = CM ( 2 cạnh tương ứng )

c)  Gọi N là giao điểm của BM và CE

Cm △ EBN = △ CBN ( c - g - c )   ( tự chứng minh nha, mik mệt quá )

\(\widehat{ENB}=\widehat{CNB}\) ( 2 góc tương ứng )

mà \(\widehat{ENB}=\widehat{CNB}=180^0\) ( kề bù )

⇒ BN ⊥ CE

⇒ BM ⊥ CE ( M ∈ BN )