Cho tam giác ABC vuông tại A, đường cao AH. Gọi HE, HF lần lượt là các đường cao của tam giác AHB, AHC.
a)chứng tỏ:BC2 = 3AH2+BE2+CF2
b)giả sử BC=2a là độ dài cố định. Tìm giá trị nhỏ nhất của BE2+CF2
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)
1. Cho tam giác ABC vuông tại A có AH vuông góc với BC . Cạnh HE , HF là đường cao của tam giác AHB và tam giác AHC
a) Chứng minh BC2 = 3AH2 + BE2 + CF2
b) Cho BC = 2a cố định . Tìm GTNN của BE2 + CF2
c) Chứng minh BE2 =BH3 / BC
2. Cho tam giác ABC , có AH vuông góc với BC . Gọi E , F lần lượt là hình chiếu của H trên AB , AC . Biết AH = x , BC = 2a
a) Chứng minh AH3 = BC . BE . CF = BC . HE . HF
b) Tính diện tích tam giác AEF theo a và x . Tìm x để diện tích tam giác AEF đạt GTLN
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
Cho tam giác ABC vuông tại A đường cao AH. Gọi EF theo thứ tự là hình chiếu của H trên AB AC
A) Chứng minh \(BC=AB\cdot sinC+AC\cdot cosC\)
B) Chứng mình \(AF\cdot AC^2=EF\cdot BC\cdot AE\)
C)Chứng minh\(AH^3=BC\cdot BE\cdot CF=BC\cdot AE\cdot AF\)
Cho tam giác nhọn abc các đường cao AD, BE, CF cắt nhau tại H, gọi O là trung điểm của BC, I là trung điểm của AH, K là giao điểm của EF, OI .
Chứng minh AH^2= 4.IK.IO
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH, các đường phân giác trong BE, CF cắt nhau tại I, gọi M,N lần lượt là chân đường cao hạ từ E, F lên BC, K là giao điểm của AN với BI, L là giao điểm của AM với CI, D là chân đường cao hạ từ I lên BC.
1. CM: Tam giác DKL vuông cân
2. CM: AI2 = HK2 + HL2
3. Gọi AH cắt EF tại S. CM: DKSL là hình vuông
Cho tam giác ABC vuông tại A đường cao AH . Gọi E F lần lượt là đường chiếu của h trên AB AC Chứng minh rằng:
a. BC² =3AH²+BE²+CF²
b. \(\dfrac{ }{ }\) AB³/AC³= BE/CF
c. AH³= BC.BE.CF
= BC.HE.HF
cho tam giác ABC vuông tại A có đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 1) BM^2 =BH^3/BC
2)AH^3= BC. BM . CN
3) HM . HN =AH^3/BC