a, \(BC=BH+CH=10\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=6\left(cm\right)\\AC=\sqrt{CH\cdot BC}=8\left(cm\right)\end{matrix}\right.\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}\approx90^0-53^0=37^0\)
b, Vì \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\) nên AMHN là hcn
Do đó \(MN=AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)
Áp dụng HTL: \(AM\cdot MB=HM^2;AN\cdot NC=HN^2\)
Áp dụng PTG: \(HM^2+HN^2=MN^2=AH^2\)
Vậy \(AM\cdot MB+AN\cdot NC=AH^2\)