Bài 4 : Cho tam giác ABC vuông tại A ( AB<AC), đường cao AH. giác HAC cắt BC tại E. Vẽ EK vuông góc với AC tại K. Tia phân a) Chứng minh rằng: AAHE = AAKE và AH = AK b) KH cắt AE tại I. Chứng minh rằng: AE I HK từ đó so sánh KE và HI. c) AH cắt KE tại D. Chứng minh rằng: AE L CD. d) Tia phân giác góc ABC cắt AE tại M. Chứng minh rằng: BM // CD
cho ΔABC vuông tại A với AB=4cm;BC=5cm.
a) Tính độ dài cạnh AC
b) Đường phân giác của góc B cắt AC tại D (D∈AC).Kẻ DH vuông tại BC.
Chứng minh AB=BH
c)Gọi I là giao điểm của DH và AB. Chứng minh CI // AH
cho tam giác ABC vuông tại A,đường phân giác BM(M thuộc AC).từ M kẻ đường thẳng MK vuông góc với BC(K thuộc BC)
a, chuwmgs minh tam giác BAM=tam giác BKM
b,Từ A kẻ đường thẳng song song với MK cắt BC tại D. Chứng minh AK là tia phân giác góc DAC
Cho tam giác ABC vuông tại A .Đường phân giác của góc B cắt AC tại E.Kẻ EH vuông góc với BC (H thuộc BC) . a/ Chứng minh tam giác ABE = tam giác HBE b/ Chứng minh BE là đường trung trực của đoạn thẳng AH. c/ Gọi I là giao điểm của Be và AH .Cho AB = 10 cm, AH = 16 cm và G là trọng tâm của tam giác ABH. Tính BG. d/ Gọi K là giao điểm của AB và EH. Chứng minh tam giác BCK cân.
Cho tam giác ABC vuông tại B. Biết AB=3cm, BC=4cm. Câu a: tính AC. Câu b: kẻ tia phân giác CK ( K thuộc AB ) , kẻ KH vuông góc với AC tại H. Chứng minh tam giác BCK= tam giác HCK. Câu c: Gọi M là giao điểm của đường thẳng HK và CB, chứng minh AK=MK
Cho tam giác ABC cân tại A có A<90 độ. Kẻ AH vuông góc với BC. Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt AB tại D.
a,Cho AH =12 cm, AC =13cm. Tính HC
b, Chứng minh tam giác ABH và tam giác ACH ;
c, Chứng minh là góc tù; Từ đó so sánh HA và DA ;
d,Chứng minh tam giác ADH là tam giác cân tại D;
e, AH cắt CD tại G; chứng minh AG=2GH ;
g, Chứng minh chu vi tam giác ABC lớn hơn tổng AH 3BG
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
Cho tam giác ABC vuông tại A. AC>AB. AH là đường cao trong tam giác ABC. Lấy D thuộc tia HC sao cho: HD=HB
a, chứng minh tam giác HAB = tam giác HAD
b, chứng minh AC>CD
c, kẻ CE vuông góc AD (E € AD). Gọi K là giao điểm của AH và CE. Chứng minh: KD // AB
d, chứng minh DH là đường trung trực của AK
e, giả sử góc B = 60°. Chứng minh HC = 3HB