Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Trang

cho tam giác ABC vuông tại A , có AD đường trung tuyến ứng với cạnh BC (D ϵ BC ) . Biết : AB = 6 cm , AC = 8cm

a) tính AD

b) kẻ DM ⊥ AB, DN ⊥ AC. Chứng minh tứ giác AMDN là hình chữ nhật

tam giác ABC phải có thêm điều kiện gì thì AMDN là hình vuông

làm hộ nha mai mình kiểm tra 1 tiết rồi , chi tiết nha ...............

Hải Đăng
11 tháng 11 2019 lúc 21:15

Violympic toán 8

a) Tính AD:

Áp dụng định lý Pitago vào ΔvABC

BC = \(\sqrt{AB^2+AC^2}\)

BC = \(\sqrt{6^2+8^2}\)

BC = 10 (cm)

Mà: AD là đường trung tuyến trong Δv ABC

=> AD = \(\frac{BC}{2}\) \(\frac{10}{2}\) = 5 (cm)

b) Chứng minh AMDN là hình chữ nhật:

Ta có: \(\widehat{A}=90^o\) (ΔABC vuông tại A)

\(\widehat{M}=90^o\) ( DM ⊥ AB)

\(\widehat{N}=90^o\) (DN ⊥ AC)

=> AMDN là hình chữ nhật (Tứ giác có 3 góc vuông)

c) Điều kiện của ΔABC để AMDN là hình vuông:

Ta có: AD = DB ( Trung tuyến AD ứng với BC trong ΔvABC)

=> ADB cân tại D

Mà: DM là đường cao

=> DM cũng là đường trung tuyến

=> AM = \(\frac{1}{2}\) AB

Tương tự:

DN cũng là đường trung tuyến của ΔADC

=> AN = \(\frac{1}{2}\) AC

Ta có: AMDN là hình vuông

<=> AN = AM

<=> AB = AC

<=> ΔABC vuông cân tại A

Vậy ΔABC vuông cân tại A thì AMDN là hình vuông

Khách vãng lai đã xóa

Các câu hỏi tương tự
hoanganhhbhb123
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Đức gay
Xem chi tiết
Gallavich
Xem chi tiết
Big City Boy
Xem chi tiết