Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc son

cho tam giac ABC cân tại A gọi M,O lần lượt là trung điểm BC, AC. gọi N là điểm đối xứng với M qua O

a.tính diện tích tam giác ABC biết AB=5cm,Bc=6cm

b.tứ giác AMCN là hình gì? vì sao?

c.tam giác ABC có thêm điều kiện gì thì tứ giác AMCN là hình vuông

Nguyễn Lê Phước Thịnh
9 tháng 1 2021 lúc 8:23

a) Ta có: M là trung điểm của BC(gt)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)

Ta có: ΔABC cân tại A(gt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)

\(\Rightarrow AM\perp BC\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AM^2=AB^2-BM^2=5^2-3^2=16\)

hay AM=4(cm)

Xét ΔABC có AM là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AM\cdot BC}{2}=\dfrac{4\cdot6}{2}=\dfrac{24}{2}=12cm^2\)

Vậy: Diện tích tam giác ABC là 12cm2

b) Xét tứ giác AMCN có 

O là trung điểm của đường chéo AC(gt)

O là trung điểm của đường chéo MN(M và N đối xứng nhau qua O)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(\(AM\perp BC\))

nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Hình chữ nhật AMCN trở thành hình vuông khi AM=CM

mà \(CM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)

Xét ΔABC có

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

\(AM=\dfrac{BC}{2}\)(cmt)

Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(\widehat{BAC}=90^0\)

Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì AMCN là hình vuông


Các câu hỏi tương tự
Trần Quốc Tuấn hi
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết