Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Bảo Hân

Cho tam giác ABC vuông tại A có AB = 8cm,AC = 6cm, AH là đường cao, AD là đường phân giác.

a) Tính BD và CD

b) Kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F. Chứng minh: AE.AB = \(AH^2\)

c) Chứng minh AE.AB = AF.AC

d) Tính BE

Nguyễn Lê Phước Thịnh
15 tháng 6 2020 lúc 20:56

a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\frac{DC}{AC}=\frac{DB}{AB}\)(tính chất đường phân giác của tam giác)

hay \(\frac{DC}{6}=\frac{DB}{8}\)

Ta có: DC+DB=BC(D nằm giữa B và C)

hay DC+DB=10cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{DC}{6}=\frac{DB}{8}=\frac{DB+DC}{8+6}=\frac{10}{14}=\frac{5}{7}\)

Do đó: \(\left\{{}\begin{matrix}\frac{DC}{6}=\frac{5}{7}\\\frac{DB}{8}=\frac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DC=\frac{5\cdot6}{7}=\frac{30}{7}cm\\DB=\frac{5\cdot8}{7}=\frac{40}{7}cm\end{matrix}\right.\)

Vậy: \(DC=\frac{30}{7}cm\); \(DB=\frac{40}{7}cm\)

b) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{8\cdot6}{2}=24cm^2\)(1)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{AH\cdot10}{2}=5\cdot AH\)(2)

Từ (1) và (2) suy ra \(5\cdot AH=24\)

hay AH=4,8cm

\(\Rightarrow AH^2=23,04cm^2\)(3)

Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=8^2-4,8^2=40,96\)

hay \(BH=\sqrt{40,96}=6,4cm\)

Xét ΔHEA và ΔBHA có

\(\widehat{HEA}=\widehat{BHA}\left(=90^0\right)\)

\(\widehat{B}\) chung

Do đó: ΔHEA∼ΔBHA(g-g)

\(\frac{AE}{AH}=\frac{AH}{AB}\)

hay \(\frac{AE}{4.8}=\frac{4.8}{8}\)

\(AE=\frac{4.8\cdot4.8}{8}=2,88cm\)

\(AE\cdot AB=2,88\cdot8=23,04cm\)(4)

Từ (3) và (4) suy ra \(AE\cdot AB=AH^2\left(=23,04\right)\)

c) Ta có: BH+HC=BC(H nằm giữa B và C)

hay HC=BC-BH=10-6,4=3,6cm

Ta có: ΔAHC vuông tại H(gt)

nên \(S_{AHC}=\frac{AH\cdot HC}{2}=\frac{4,8\cdot3,6}{2}=8,64cm^2\)(6)

Xét ΔAHC có HF là đường cao ứng với cạnh AC(gt)\

nên \(S_{AHC}=\frac{HF\cdot AC}{2}=\frac{HF\cdot6}{2}=3\cdot HF\)(7)

Từ (6) và (7) suy ra \(3\cdot HF=8,64\)

hay HF=2,88cm

Áp dụng định lí pytago vào ΔAHF vuông tại F, ta được:

\(AH^2=AF^2+HF^2\)

\(\Leftrightarrow AF^2=AH^2-HF^2=4,8^2-2,88^2=14,7456\)

hay \(AF=\sqrt{14,7456}=3,84cm\)

\(AC\cdot AF=3,84\cdot6=23,04cm\)(5)

Từ (4) và (5) suy ra \(AE\cdot AB=AF\cdot AC\)(đpcm)

d) Ta có: BE+AE=BA(E nằm giữa A và B)

hay BE=AB-AE=8-2,88=5,12cm

Vậy: BE=5,12cm


Các câu hỏi tương tự
phamthiminhanh
Xem chi tiết
Big City Boy
Xem chi tiết
Ctuu
Xem chi tiết
:vvv
Xem chi tiết
Phương Nguyễn 2k7
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Big City Boy
Xem chi tiết
phamthiminhanh
Xem chi tiết
nguyễn thị hồng hạnh
Xem chi tiết