a: ΔBAD vuông tại A
=>góc BDA<90 độ
=>góc BDC>90 dộ
=>BD<BC
mà BE=BD
nên BE<BC
=>góc BEC>góc BCE
b: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có
góc C chung
=>ΔCMD đồng dạng với ΔCAB
=>CM/CA=CD/CB
=>CD/CM=CB/CA
=>ΔCDB đồng dạng với ΔCMA
=>góc CDB=góc CMA
=>góc BMA=góc BEA=góc BDE
ΔACB vuông tại A
mà AM là trung tuyến
nên MA=MB=MC
=>MA=MC
=>ΔMAC cân tại M
=>góc BMA=2*góc MAD
mà góc MAD=góc EAP
nên góc BMA=góc BEA=2*góc EAP
=>ΔEAP cân tại E
=>EA=EP
c: BP=BE+EP
AC=AD+CD
mà EP=AD
và DC=BE
nên BP=AC