Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
c.Chứng minh AD là tia phân giác của góc MAH.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
Cho ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC) và AH là đường cao của tam giác. Gọi M, N lần lượt là hình chiếu vuông góc của H lên AB, AC. Kẻ NE vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt tia AH tại D và AD cắt đường tròn tại F. Chứng minh :
a) ABC + ACB = BIC và tứ giác DENC nội tiếp;
b) AM.AB = AN.AC và tứ giác BFIC là hình thang cân;
c) Tứ giác BMED nội tiếp.
Tam giác ABC nội tiếp đường tròn (T) có tâm O có AB =AC và góc BAC > 90 độ. Gọi M là trung điểm AC, tia MO cắt (T) tại D, BC lần lượt cắt AO và AD tại N và P.
a) Phân giác góc BDP cắt BC tại E, ME cắt AB tại F. Chứng minh CA =CP và ME vuông góc với DB
b ) Chứng minh tam giác MNE cân, tính tỉ số DE/DF
Câu 8(3 điểm): Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O; R). Vẽ đường cao
AH của tam giác ABC và đường kính AD của (O).
a) Chứng minh hệ thức: AB.AC =AH. AD.
b) Vẽ BE và CF lần lượt vuông góc với AD (E và F thuộc AD ). Chứng minh rằng HE vuông góc AC và HF vuông góc AB.
c) Gọi M là trung điểm BC. Chứng minh rằng M là tâm đường tròn ngoại tiếp tam giác EHF.
Cho tam giác ABC vuông tại A có AB nhỏ hơn AC , đường cao AH , trung tuyến AM .Gọi E và F lần lượt là hình chiếu của điểm H trên cạnh AB và AC . AM cắt FE tại K . Chứng minh FE vuông góc với AM .