Bài 3: Tính chất đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hương Giang

Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng:

a) AB là tia phân giác của góc DAH.

b) BH.CD = BD.CH

Nguyễn Lê Phước Thịnh
21 tháng 1 2021 lúc 21:46

a) Ta có: ΔABH vuông tại H(AH⊥BC)

nên \(\widehat{HAB}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{HAB}+\widehat{ABM}=90^0\)(1)

Ta có: tia AB nằm giữa hai tia AD,AM(gt)

nên \(\widehat{DAB}+\widehat{MAB}=\widehat{MAD}\)

hay \(\widehat{DAB}+\widehat{MAB}=90^0\)(2)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM

Xét ΔABM có AM=BM(cmt)

nên ΔABM cân tại M(Định nghĩa tam giác cân)

\(\widehat{MBA}=\widehat{MAB}\)(hai góc ở đáy)(3)

Từ (1), (2) và (3) suy ra \(\widehat{HAB}=\widehat{DAB}\)

mà tia AB nằm giữa hai tia AH,AD

nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)


Các câu hỏi tương tự
Phạm Minh Anh
Xem chi tiết
Nguoi Viet Nam
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Hoàng Phụng Chuẩn
Xem chi tiết
Âu Minh Anh
Xem chi tiết
Nguoi Viet Nam
Xem chi tiết
Minh Nguyen
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Phan Hường
Xem chi tiết