Cho tam giác ABC vuông tại A (AB < AC). Gọi I là trung điểm cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N.
a) Chứng minh rằng tứ giác AMIN là hình chữ nhật
b) Gọi D là điểm đối xứng với I qua N. Chứng minh rằng tứ giác AICD là hình thoi
c) Đường thẳng BN cắt CD tại K. Chứng minh rằng \(\frac{DK}{DC}=\frac{1}{3}\)
c) GỌi P là giao điểm của BN và AI
Vì AICD là hình thoi(cmt)
=>AI//DC
=>^AIN=^CDN (cặp góc sole trong)
Xét ΔINP và ΔDNK có:
^PIN=^KDN(cmt)
IN=DN
^INP=^DNK(đ đ)
=> ΔINP=ΔDNK (g.c.g)
=> IP=DK
Vì AICD là hình thoi (cmt)
=> AI=DC
AN=NC
=>BN là trung tuyến
Xét ΔABC có: AI, BN là đường trung tuyến
mà BN cắt AI tại P
=>P là trọng tâm tam giác
=> IP/AI=1/3
hay DK/DC=1/3
a) Ta có : ^A=^M=^N=90*
=> Tứ giác AMIN là hình chữ nhật
Xét tam giác ACB có :
IB=IC (gt)
IN //AB (IN vuông góc vs CA ; CA vuông góc vs AC ; từ vuông góc đến // )
=> NC =NA (đg tb của tam giác )
b) Xét tứ giác AMIN có :
CA cắt ID tại N
Có : NI=ND (gt)
NC=NA(cmt)
=> AMIN là hbh
mà CA vuông góc vs ID
=> AMIN là hình thoi
ghi nhầm xét tam giác ABC là từ phần b nha b