Cho tam giác ABC vuông ở A, trung tuyến CCM. Trên tia đối của tia MC lấy điểm D sao cho MD = MC
a, Chứng minh tam giác MAC = tam giác MBD
b, Chứng minh BC // AD
Cho tam giác ABC . GỌi M,N lần lượt là trung điểm của cạnh AB và AC . Trên tia đối của tia MC lấy điểm P sao cho MP = MC . Trên tia đối của tia NB lấy điểm Q sao cho NQ = NB .
a) Chứng minh A là trung điểm của PQ
b) Chứng minh MN song song với BC và 4MN = PQ
c) Cho biết \(\widehat{CAB}=90^o\) . Chứng minh \(MP^2=BC^2-\dfrac{3}{4}AB^2\)
Cho tam giác ABC vẽ điểm M là trung điểm BC trên tia đối của tia MA lấy điểm D sao cho MA=MD
a) CM tam giác ABM= tam giác DCM
b) CM AB//DC
c) kẻ BE vuông góc với AM CF vuông góc với DM CM M là trung điểm của đoạn thẳng Ef
cho tam giác ABC nhọn có AB=AC. Gọi H là trung điểm BC
a)Chứng minh tam giác AHB = tam giác AHC
b) trên tia đối của tia HA lấy điểm M sao cho HM = HA Chứng minh tam giác AHB = tam giác MHC và MC song song AB Chứng minh tam giác ACM cân
c)Trên tia đối của tia CM, lấy điểm N sao cho C là trung điểm của MN. Gọi O là giao điểm của AC và HN, OM cắt AN tại K. Chứng minh: 20k=OM
Cho tam giác ABC vuông tại A có am là đường trung tuyến trên tia đối của MA lấy điểm D sao cho MD = MA
a, chứng minh tam giác ACD vuông
b ,Gọi K là trung điểm của AC Chứng minh KB bằng KD
c , KD cắt BC tại I và KB cắt AD tại N . Chứng minh tg KNI cân
cho tam giác ABC có cạnh AB = BC, M là trung điểm của BC
a, chứng minh tam giác ABM = tam giác ACM
b, trên tia đối của tia MA lấy điểm D sao cho MD =MA chứng minh AC = BD
c, chứng minh AB // CD d, trên nửa mật phẳng là bờ AC khống chữa điểm B, vẽ tia Ax // BC lấy điểm I thuộc Ax sao cho AI = BC chứng minh 3 điểm D,C,I thẳng hàng