Gửi em
a) Xét \(\Delta APE\) và \(\Delta APH\) có:
AP (chung)
\(\widehat{EPA}=\widehat{HPA}=90^0\)
PE = PH (gt)
Do đó: \(\Delta APE=\Delta APH\left(c-g-c\right)\)
Xét \(\Delta AQH\) và \(\Delta AQF\) có:
AQ: cạnh chung
\(\widehat{AQH}=\widehat{AQF}=90^0\)
AH = AF (gt)
Do đó: \(\Delta AQH=\Delta AQF\left(c-g-c\right)\)
b) ΔAPE = ΔAPH (cmt) => \(\widehat{EAP}= \widehat{HAP}\)
=> \(\widehat{EAH}= 2\widehat{HAP}\)
Tương tự ta có: \(\widehat{HAF} = 2\widehat{HAQ}\)
Nên \(\widehat{EAH} +\widehat{HAF}=2(\widehat{HAP}+ \widehat{HAQ})\)
=> \(\widehat{EAH} + \widehat{HAF}=2\widehat{BAC}\)
=> \(\widehat{EAH} + \widehat{HAF}=2.90^o=180^o\)
Vậy E, A, F thẳng hàng