Cho tam giác ABC cân tại A có AB = AC = 10 cm;BC = 12 cm.Kẻ AH vuông góc với BC. a) Chứng minh HB = HC;tính AH. b) kẻ Bx vuông góc với AB tại B; Cy vuông góc với AC tại C; Bx và Cy cắt nhau tại M. chứng minh AM là tia phân giác của góc BAC và suy ra A,H,M thẳng hàng. c)kẻ HK song song với MB(K thuộc MC) Trên tia HM lấy điểm O sao cho OM = 2OH. Chứng minh ba điểm B,O,K thẳng hàng
Cho tam giác ABC cân tại A. Trên nửa mặt phẳng bờ BC không chứa A lần lượt vẽ các tia Bx cà Cy sao cho Bx ⊥ BA; Cy ⊥ CA. Gọi D là giao điểm của Bx và Cy. Chứng minh:
a) ΔABD = ΔACD;
b) DA là tia phân giác của góc BDC.
Cho tam giác ABC có AB=AC.kẻ BD vuông góc AC tại D,CE vuông góc với AB tại E.BD và CE cắt nhau tại K.Qua B kẻ Bx vuông góc AB,qua C kẻ Cy vuông góc AC.Bx và Cy cắt nhau tại M.Cm A,K,M thẳng hàng
Cho tam giác ABC có AB=AC.kẻ BD vuông góc AC tại D,CE vuông góc với AB tại E.BD và CE cắt nhau tại K.Qua B kẻ Bx vuông góc AB,qua C kẻ Cy vuông góc AC.Bx và Cy cắt nhau tại M.Cm A,K,M thẳng hàng
Cho tam giác ABC có M là trung điểm của BC. Qua B kẻ, Bx song song với AC và qua C kẻ Cy song song với AB. Gọi Bx cắt Cy tại D. Chứng minh:
a/ Tam giác ABC= Tam giác DCB
b/ Góc AMB= góc DMC
c/ 3 điểm A, M, D thẳng hàng
d/ Nếu AM=1/2 BC thì góc BDC=?
BÀI 8 : Cho tam giác ABC vuông tại C ,Trên cạnh AB lấy điểm D sao cho AD =AB . Kẻ qua D đường thẳng vuông góc với BC tại E . AE cắt CD tại I . a)chứng minh AE là phân giác góc CAB. b) Chứng minh AD là trung trực của CD . c) so sánh CD và BC d) M là trung điểm của BC ,DM cắt BI tại G,CG cắt DB tại K.Chứng minh K là trung điểm của DB
Cho tam giác ABC cân tại A(góc A nhọn). Vẽ AH vuông góc với BC (H thuộc BC). a. Chứng minh tam giác AHB bằng tam giác AHC b. Đường thẳng qua H song song với AB cắt AC tại D. Gọi M là trung điểm của HC. Chứng minh tam giác DHC cân và DM song song với AH.
giúp em câu b
Bài 12: Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi H, K lần lượt là trung điểm của AD, BC. Trung trực AD, BC cắt nhau tại I. Vẽ IE vuông góc với AB tại E.
a) Chứng minh : IB = IC; IA = ID.
b) Chứng minh: và AI là phân giác của góc BAC.
c) Chứng minh: BE = HC và AI là đường trung trực của đoạn thẳng EH.
d) Từ C kẻ đường thẳng song song với AB, cắt đường thẳng EH tại F. Chứng minh: và E, K, F thẳng hàng.
Cho tam giác ABC có M là trung điểm của BC. Qua B kẻ, Bx song song với AC và qua C kẻ Cy song song với AB. Gọi Bx cắt Cy tại D. Chứng minh:
a/ Tam giác ABC= Tam giác DCB
b/ Góc AMB= góc DMC
c/ 3 điểm A, M, D thẳng hàng
d/ Nếu AM=1/2 BC thì góc BDC=?