Cho tam giác ABC, lấy D, E lần lượt là trung điểm của AB, AC.
a) Cho biết BC = 6 cm. Tính độ dài đoạn thẳng DE.
b) Gọi G là trung điểm của BC. Chứng minh tứ giác DECG là hình bình hành.
c) Qua C kẻ đường thẳng song song với AB, đường thẳng này cắt đường thẳng DE tại K. Lấy O là trung điểm của DC. Chứng minh 3 điểm K, O, B thẳng hàng.
d) Tìm điều kiện của tam giác ABC để tứ giác DGCK là hình thang cân.
Bài 1: Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì ? vì sao ?
b) Chứng minh rằng nếu ABCD là hình thang cân thì MP là tia phân giác của góc QMN.
Bài 2: Cho hình bình hành ABCD có BC = 2AB. Góc A=60\(^0\). Gọi E, F thứ tự là trung điểm của BC và AD, vẽ I đối xứng với A qua B.
a) Tứ giác ABEF là hình gì? Chứng minh.
b) Chứng minh tư giác AIEF là hình thang cân.
c) Chứng minh BICD là hình chữ nhật.
d) Tính góc AED.
Bài 1: Cho hình bỉnh hành ABCD có DAC = 90 độ. Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh AM = CN
b. Chứng minh AN = CM
c. Chứng minh tứ giác AMCN là hình thoi.
Cho tam giác ABC vuông tại A và D là trung điểm BC. Gọi M là điểm đối xứng của D qua AB. E là giao điểm của DM và AB. Gọi N là điểm đối xứng của D qua AC, F là giao điểm của DN và AC
a) Tứ giác AEDF là hình gì? Vì sao
b) ADBM là hình gì? Vì sao
c) Chứng minh M đối xứng với N qua A
d) Tam giác vuông ABC cần có thêm điều kiện gì thì tứ giác AEDF là hình vuông?
cho tam giác nhọn ABC ,gọi k,H lần lượt là trung điểm AB,AC.gọi D là điểm đối xứng với C qua K
a)c/m AD//BC
b)gọi E là điểm đối xứng với B qua H .c/m A là trung điểm của DE.
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm AC, K là điểm đối xứng của M qua I
a) Tứ giác AMCK là hình gì? Vì sao?
b) Tứ giác AKMB là hình gì? Vì sao?
c) Trên tia đối của tia MA lấy điểm L sao cho ML bằng MA. Chứng minh tứ giác ABLC là hình thoi
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
Cho tam giác ABC cân tại A, AH là đường trung tuyến. Gọi O là trung điểm AC, K là điểm đối xứng của H qua O.
a) C/m tứ giác AOHB là hình thang
b) C/m tứ giác AHCK là hình chữ nhật
c) C/m tứ giác AKHB là hình bình hành
d) Tìm điều kiện của tam giác cân ABC để tứ giác AHCK là hình vuông