cho tam giác ABC với M,N lần lượt là trung điểm của hai cạnh AB,AC. xác định độ dài của vec tơ AB và AC
cho tam giác ABC và 2 điểm M,N sao cho MA→+MB→=0, 2NA→+NC→=0. gọi I là trung điểm MN. Điểm D thỏa mãn hệ thức DB→=kDC→(k≠1).Biết ba điểm A,I,D thẳng hàng .tìm k
Cho tam giác ABC trên các đường thẳng BC AC AB lan luot lay cac diem M N P sao \(\overrightarrow{MB}=\overrightarrow{3MC}\)
\(\overrightarrow{NA}=\overrightarrow{3CN}\) , \(\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{0}\)
Cm \(\overrightarrow{PM},\overrightarrow{PN}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
Cm 3 điểm M N P thẳng hàng
Bài 14. Cho tam giác ABC. Trên cạnh AB lấy điểm E sao cho EB = 2EA; M là điểm thỏa mãn vecto ME + 3vecto MC =vecto 0. Biểu diễn vectơ MA qua các vectơ MB , MC .
Cho tam giác ABC. Xác định vị trí các điểm M thỏa mãn: \(\overrightarrow{MA}+2\overrightarrow{MB}=\overrightarrow{0}\)
Cho ΔABC và 3 số thực m,n,p sao co m + n + p ≠ 0. C/m rằng có duy nhất 1 điểm M sao cho \(m\overrightarrow{MA}+n\overrightarrow{MB}+p\overrightarrow{MC}=0\)
Cho tam giác ABC. Tìm điểm M sao cho \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\) ?
Cho tam giác ABC. Gọi M, N, E lần lượt là trung điểm của BC, CA và AB. Chứng minh các vecto AM+BN+CE=0
cho tam giác ABC gọi D,I là các điểm đc xác định bởi
3DB - 2DC= 0
IA + 3IB -2IC = 0
a, biểu diễn AD theo hai vector AB và AC
b, chứng minh ba điểm I, A, D thẳng hàng