Áp dụng định lý Ta lét ta có:
ED // AC \(\Rightarrow\frac{AE}{AB}=\frac{CD}{BC}\)
DF // AB \(\Rightarrow\frac{AF}{AC}=\frac{BD}{BC}\)
Cộng theo vế:
\(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD+BD}{BC}=\frac{BC}{BC}=1\)
Áp dụng định lý Ta lét ta có:
ED // AC \(\Rightarrow\frac{AE}{AB}=\frac{CD}{BC}\)
DF // AB \(\Rightarrow\frac{AF}{AC}=\frac{BD}{BC}\)
Cộng theo vế:
\(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD+BD}{BC}=\frac{BC}{BC}=1\)
Cho tam giác ABC, điểm D thuộc cạnh AB, E thuộc cạnh AC. Gọi I, M lần lượt là trung điểm của DE, BC. Đường thẳng qua I và song song với AB cắt MD ở G. Đường thẳng qua I song song với AC cắt ME ở H. Chứng minh GH//BC.
Help me!!
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
Cho tam giác ABC ( AB<AC) ngoại tiếp đường tròn (O;R) . đường tròn (O;R) tiếp xúc với các cạnh BC,AB lần lượt tại D,N . kẻ đường kính DI của đường tròn (O;R) . tiếp tuyến của đường tròn (O;R) tại I cắt các cạnh AB,AC lần lượt tại E,F
1) Chứng minh tam giác BOE vuông và EI.BD=FI.CD=R2
2) Gọi P, K lần lượt là trung điểm của các đoạn thẳng BC,AD ; Q là giáo điểm cảu BC và AI . Chứng minh AQ=2KP
3) Gọi A1 là giao điểm của AO với cạnh BC , B1 là giao điểm của BO với cạnh AC , C1 là giao điểm của CO với cạnh AB và (O1;R1) là đường tròn ngoại tiếp tam giác ABC
Chứng minh : \(\frac{1}{ÂA1}+\frac{1}{BB1}+\frac{1}{CC1}< \frac{2}{R1-OO1}\)
Tam giác ABC có BC > AC. Một đường thẳng song song với AB cắt cạnh BC và AC lần lượt tại các điểm M và N. Chứng minh rằng BN > AM
cho hình thang ABCD,có đáy nhỏ là CD.Từ D kẻ đường thẳng song song với cạnh bên BC,cắt AC tại M và AB tại K.Từ C kẻ đường thẳng song song với cạnh bên AD,cắt đáy AB tại F.Qua F kẻ đường thẳng song song với đường chéo AC,cắt cạnh bên BC tại P.CMR:
a)MP song song với AB
b)Ba đường thẳng MP,CF,DB đồng quy.
Cho tam giác ABC, trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM, cắt AB,AC tại E,F
a) Chứng minh DE+DF không đổi khi D di động trên BC
b) Qua A vẽ đường thẳng song song với BC, cắt FE tại K. CMR K là trung điểm của FE
Cho tam giác ABC có đường tròn nội tiếp (I), tiếp xúc với các cạnh BC,C A,AB theo thứ tự tại D,E,F. Đường thẳng qua A song song với BC cắt DE,DF thứ tự tại P,Q.
a) Chứng minh rằng A là trung điểm của PQ.
b) Chứng minh rằng trực tâm của tam giác DPQ nằm trên (I).
c) Gọi M là trung điểm EF. Chứng minh \(\widehat{PMQ}\) là góc tù.
Idol nào zô làm cái