a) Gọi K là trung điểm của DC
Xét ΔCBD có
M là trung điểm của BC
K là trung điểm của DC
Do đó: MK là đường trung bình của ΔCBD
Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\)
Xét ΔAMK có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
Suy ra: AD=DK
mà DK=KC
nên AD=DK=KC
\(\Leftrightarrow AD=DK=KC=\dfrac{AC}{3}\)
\(\Leftrightarrow DK+DC=\dfrac{AC}{3}+\dfrac{AC}{3}=\dfrac{2}{3}AC\)
\(\Leftrightarrow AD=\dfrac{1}{2}CD\)(đpcm)
b) Xét ΔAMK có
I là trung điểm của AM
D là trung điểm của AK
Do đó: ID là đường trung bình của ΔAMK
Suy ra: \(ID=\dfrac{MK}{2}\)
mà \(MK=\dfrac{BD}{2}\)
nên \(ID=\dfrac{\dfrac{BD}{2}}{2}=\dfrac{BD}{4}\)
\(\Leftrightarrow BD=4\cdot ID\)(đpcm)