Cho tam giác ABC, ba duong cao AD, BE, CF cat nhau tai H.
a, Cm Tam giac AFH dong dang Tam giac ADB.
b, Cm BH*HE=CH*HF.
c, Chung minh tam giac BFH dong dang tam giac CFA .
d, Tam giac BFD dong dang tam giac BCA.
e, Goi M la giao diem cua DF, AC. Cm MA*MC=MF*MD.
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = 2 AB.
Trên tia đối của tia AC lấy điểm E sao cho AE = 2 AC.
a) Chứng minh tam giác ADE đồng dạng tam giác ABC ;
b) Tính tỉ số AD/AB
Cho tam giác ABC có AB=15, AC=8,BC=100.Trên tia AB đặt E sao cho AE=20.Qua E vẽ 1 tia cắt AC tại D sao cho góc AED=góc ACB 1/Cmr tam giác ADE đồng dạng với tam giác ABC
2/ tính các cạnh còn lại của tam giác ADE
cho tam giac DEF vuong tai D, DE = 6cm, DF = 8cm, duong cao DH.
a) Chung minh tam giac DEF dong dang voi tam giac HED.
b) DF^2 = FH.FE. Tinh HF, HE
cho tam giác ABC nhọn. Trên tia đối của tia BA lấy điểm D sao cho 2BD=BA. Trên tia đối của tia CA lấy điểm E sao cho 2CE=CA. Chứng minh tam giác ABC đồng dạng với tam giác ADE
1) Cho tu giac ABCD co AB=2,5cm; AD=4cm; BD=5cm; BC=8cm; CD=10cm. CMinh ABCD la hinh thang
3) Cho tam giac ABC co AB=4cm, D thuoc AC, AD=2cm, DC=6cm. Biet goc A=100, goc B-C=20. Tinh goc ABD
cho tam giác ABC (AB=BC) . Trên cạnh AC chọn điểm K nằm giwuax A và C. trên tia đối của tia CA lấy E sao cho CE=AK. CM: BK+BE>BA+BC
Cho tam giác ABC có AB<AC và đường phân giác ngoài AE. Trên tia EA lấy điểm F sao cho ECF=EAB. Chứng minh:
a) ECF>ECA suy ra A nằm giữa E và F.
b) AE.EF=BE.CE.
c) AE.AF=AB.AC.
d) AE^2= BE.CE-AB.AC
Cho tam giác ABC vuông tại A có AB=6cm AC=8cm,AD là tia phân giác của góc BAC(D thuộc BC)
a)Tính tỉ số DB/DC và độ dài các đoạn thẳng BC,DB,DC
b)Từ D kẻ DE vuông góc với AB tại E(E thuộc AB).Tính độ dài DE,AE và diện tích tứ giác AEDC