a) Vì DH \(\perp\) EF => \(\widehat{DHE}=90^o\)
mà \(\widehat{EDF}=90^o\) (\(\Delta\)DEF vuông tại D)
do đó \(\widehat{DHE}=\widehat{EDF}\)
Xét \(\Delta\)HED và \(\Delta\)DEF có:
\(\widehat{E}\) chung
\(\widehat{DHE}=\widehat{EDF}\) (cmt)
=> \(\Delta\)HED đồng dạng với \(\Delta\)DEF (g.g)
b) CMTT: \(\Delta\)HFD đồng dạng với \(\Delta\)DFE
=> \(\dfrac{DF}{FE}=\dfrac{HF}{DF}\) (ĐN 2 \(\Delta\) đồng dạng)
=> \(DF^2=HF\cdot FE\) (t/c TLT)
Vì \(\Delta\)DEF vuông tại D (gt)
=> \(DE^2+DF^2=FE^2\) (ĐL Pi-ta-go)
mà DE = 6cm, DF = 8cm (gt)
=> EF = 10cm
Thay EF = 10cm, DF = 8cm vào \(DF^2=HF\cdot FE\), ta có:
\(HF=\dfrac{DF^2}{FE}=\dfrac{8^2}{10}=6,4cm\)