Ta có \(S=\dfrac{abc}{4R}=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
\(\Rightarrow S^2=\dfrac{abcpr}{4R}=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)
\(\Rightarrow\dfrac{2r}{R}=\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{abc}\)
Theo giả thiết \(\dfrac{a^3+b^3+c^3}{abc}+\dfrac{2r}{R}=4\)
\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{abc}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{abc}=4\)
\(\Leftrightarrow a^3+b^3+c^3+\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=4abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2=6abc\left(1\right)\)
Áp dụng BĐT AM-GM:
\(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\ge6abc\)
\(\Rightarrow\left(1\right)\) đúng
Đẳng thức xảy ra khi \(a=b=c\)
\(\Leftrightarrow\Delta ABC\) đều