Cho tam giác ABC và 3 điểm A', B', C' lần lượt thuộc các cạnh BC, CA, AB sao cho AA', BB', CC' đồng quy (A', B', C' không trùng với các đỉnh của tam giác ). CM: \(\dfrac{A'B}{A'C}.\dfrac{B'C}{B'A}.\dfrac{C'A}{C'B}=1\)
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
cho tam giác đều ABC, điểm M nằm trong tam giác đó. Qua M kẻ đường thẳng song song vs AC, cắt BC ở D. Kẻ đường thẳng song song vs AB và cắt AC ở E. Kẻ đường thẳng song song vs BC, cắt AB ở F. Chứng minh rằng:
a, BFMD, CDME, AEMF là các hình thang cân
b, Chứng minh góc EMD=CDM=EMF
c, Chứng minh MB<MC+MA
Cho tam giác ABC nhọn có AA' ,BB',CC' là các đường cao cắt nhau tại H
a , C/M BC' *AB + CB'* AB = BC^2
b, HB*HC / AB*AC + AH*HB / BC*AC + HC* AH / BC *AB =1
C Gọi H là trung điểm của BC .Qua H kẻ đt vuông góc với BH cắt AB , AC ở M , N
C/m H là trung điểm MN
Cho tam giác ABC có 3 góc nhọn. 3 đường cao AA', BB', CC' cắt nhau tại H; A1, B1, C1 là các điểm đối xứng của H qua BC, AC,AB. CM: \(\dfrac{AA_1}{AA'}+\dfrac{BB_1}{BB'}+\dfrac{CC_1}{CC'}\) không đổi
Câu 6: Gọi O là một điểm bất kì nằm trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh BC,AC,AB theo thứ tự ở A',B',C'. CMR: \(\dfrac{AC'}{C'B}.\dfrac{BA'}{A'C}.\dfrac{CB'}{B'A}=1\)
Cho tam giác ABC vuông tại A (AB<AC), phân giác BD (D thuộc AC). Gọi M là trung điểm của BC.
Đường thẳng MD cắt đường thẳng BA tại N. Qua A kẻ đường thẳng song song với BC cắt NM, NC thứ tự tại P và Q
a) CMR: PA=PQ
b) Qua B kẻ đường thẳng vuông góc với BC cắt tia CA tại E. CMR: DA.EB=DC.EA
c) CM: Hai tam giác EBD và NBD có diện tích bằng nhau