Cho tam giác ABC nội tiếp (O). Lấy điểm D trên cung BC không chứa A. Gọi H,I,K theo thứ tự là hình chiếu của D trên BC,CA,AB. Chứng minh rằng: a, \(\dfrac{BC}{DH}=\dfrac{AC}{DI}+\dfrac{AB}{DK}\)
b, H,I,K thẳng hàng
Cho hình vuông ABCD. Gọi I là 1 điểm nằm giữa A và D. Tia DI cắt tia CD ở K. Kẻ Dx vuông góc DI cắt tia BC ở E
a) Chứng minh tam giác DIE là một tam giác cân
b) Tổng \(\dfrac{1}{DI^2}\)+\(\dfrac{1}{DK^2}\)không đổi khi I di động trên cạnh AB
Cho nửa đường tròn kính BC. Trên nửa đường tròn lấy điểm A. Kẻ AH vuông góc với BC (H thuộc BC). Trên cung BC lấy điểm D, BD cắt AH tại I
a) Chứng minh: Tứ giác IHCD nội tiếp
b) Chứng minh: \(AB^2=BI.BD\)
c) Tâm đường tròn ngoại tiếp tam giác AID luôn nằm trên 1 đường cố định khi D thay đổi trên cung AC
cho tam giác ABC (AC<BC) nội tiếp đg tròn tâm O đg kính AB. kẻ CH vuông góc với AB(H thuộc AB). trên cung nhỏ BC lấy điểm E bất kì, gọi giao điểm của AE với CH là F
1, chứng minh tứ giác HFEB nội tiếp đg tròn
2, chứng minh AC2 = AE.AF
3, gọi I là giao điểm của BC với AE,K là hình chiếu vuông góc của I trên AB tìm vị trí điểm E trên cung nhỉ BC để KE + KC đạt giá trị lớn nhất
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). kẻ DK vuông góc với EF tại K(K thuộc EF). gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF
a.cm tứ giác EMNF nội tiếp
b.cm DM.DE=DN.DF
Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Kẻ 2 tiếp tuyến AB và AC vớ đường tròn(B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M rồi kẻ đường vuông góc MI,MH,MK xuống các cạnh BC,CA,AB.
Chứng minh MI mũ 2 = MH . MK
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.