Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho tam giác ABC nhọn nội tiếp đường tròn (O) đường kính AD. Tiếp tuyến tại D cắt đường thẳng BC tại P, đường thẳng PO cắt đường thẳng AC tại M và cắt đường thẳng AB tại N. Gọi I là trung điểm của đoạn thẳng BC. Qua C vẽ đường thẳng song song với đường thẳng MN cắt đường thẳng AD tại E và cắt đường thẳng AB tại Q. Chứng minh rằng: a) Bốn điểm P, O, I, D cùng nằm trên một đường tròn. b) EIP = EDC . c) O là trung điểm của đoạn thẳng MN
cho (O;R) từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB và AC (B,C là tiếp điểm)
từ điểm m thuộc cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn tiếp tuyến này cắt AB,AC lần lượt tại D và E. OD và OE lần lượt cắt BC tại I và K chưng minh OM,DE và IK đồng quy
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
Cho đường tròn tâm O, đường kính AB. Qua điểm C thuộc đường tròn (C khác A và B) kẻ tiếp tuyến d với đường tròn. Từ O kẻ đường thẳng vuông góc với BC cắt BC tại I và cắt tiếp tuyến d tại M.
a) chứng minh IB = IC
b) chứng minh △MBO = ΔMCO, suy ra MB là tiếp tuyến của đường tròn tâm O
c) từ A kẻ AE vuông góc với d (E thuộc d), từ C kẻ CH vuông góc với AB (H thuộc AB). chứng minh CE2 = AE.BH
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH