Cho tam giác ABC vuông tại A ,đường cao AH.Gọi M,N lần lượt là hình chiếu của H trên AB,AC
a)Chứng minh;AM.AB=HB.HC=MN^2
b)Chứng minh ;BM.BA+AN.AC=HB.HC
c)Cho HB=4cm;HC=9cm.Tính chu vi tam giác ABC và diện tích tứ giác AMHN
Giúp mình với ạ.
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm, đường cao AH.
a) Tính BC, góc B, góc C (góc làm tròn đến phút)
b) Tính BH, AH
Gọi E, F là hình chiếu của H lần lượt lên cạnh AB, AC. Chứng minh tam giác ABC đồng dạng AFE
Cho tam giác ABC vuông tại A, đường cao AH (HϵBC)
a) Biết AB = 12cm, BC = 20cm. Tính AC, B, AH (góc làm tròn đến độ)
b) Kẻ HE vuông góc AB (EϵAB). Chứng minh: AE.AB=AC2-HC2
c) Kẻ HF vuông góc AC (FϵAC). Chứng minh: AF=AE.tanC
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
a) Chứng minh: AE.EB=HE2
b) Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
Cho tam giác ABC vuông tại C, đường cao CH. Biết AH = 4cm. HB = 9cm
a) Tính CH, CA ?
b) Kẻ HE vuông góc với AC, F vuông góc với BC (E thuộc AC, F thuộc BC) Chứng minh: CE . CA = CF . CB. Từ đó chứng minh: tam giác CEF đồng dạng với tam giác CBA
c) Chứng minh: AB = ACcosA + BCcosB
Câu 4. Cho đường trờn (O) có đường kính AB, lấy điểm C trên đường tròn (C khác A và B). a) Chứng minh: tam giác ABC vuông b) Gọi H là trung điểm của AC. Tia OH cắt tiếp tuyến tại A của (O) ở D.Chứng minh: 4OH. OD = AB^2 c) Qua O vẽ đường vuông góc với BD tại E, cắt tia AC tại M. Chứng minh MB là tiếp tuyến của (O). -•- Cho em xin hình luôn ạ, em cảm ơn
Đề bài : Tam giác ABC vuông tại C, đường cao CK. Biết :
a) Gọi H và I lần lượt là hình chiếu của K trên BC và AC. Chứng minh: CB.CH = CA.CI
b) Gọi M là chân đường vuông góc kẻ từ K xuống IH . Chứng minh 1KM2=1CH2+1CI2
gIARNG dễ hiểu nhé
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh: AE.AB = AF.AC và \(\widehat{AEF}=\widehat{ABC}\)
b) Đường trung tuyến AI của tam giác ABC cắt EF tại K. Chứng minh rằng \(cos^2B.sinB=\dfrac{KF}{BC}\)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (