hình tự vẽ
a. ΔAEB và ΔAFC
A là góc chung
AEB=AFC=90*
suy ra ΔAEB∼ΔAFC (theo trượng hợp g.g )
b. do ΔAEB∼ΔAFC
Nên \(\frac{AE}{AB}=\frac{AF}{AC}\)từ đó ta có
ΔAEF∼ΔABC
hình tự vẽ
a. ΔAEB và ΔAFC
A là góc chung
AEB=AFC=90*
suy ra ΔAEB∼ΔAFC (theo trượng hợp g.g )
b. do ΔAEB∼ΔAFC
Nên \(\frac{AE}{AB}=\frac{AF}{AC}\)từ đó ta có
ΔAEF∼ΔABC
Cho tam giác ABC nhọn có các đường cao BE, CF cắt nhau tại H (E thuộc AC, F thuộc AB)
a, CM: tam giác AEB đồng dạng tam giác AFC
b, CM: tam giác AEF đồng dạng tam giác ABC
Cho tam giác nhọn ABC Các đường cao AD, BE, CF cắt nhau tại H chứng minh rằng: a) Tâm giáo AEF đồng dạng với tam giác ABC b) BH.BE + CH.CF = BC^2 c) AD.HD
Cho Tam giác ABC vuông tại A kẻ phân giác BD cắt đường cao AH tại E
a) C/m ABC đồng dạng HBA
b) C/m BE.AD = BD.HE
c) Tính diện tích tam giác AEB biết AB = 15 cm, AC = 20 cm
Cho tam giác ABC có 3 góc nhọn các đường cao AD,BE,CF cắt nhau tại H. chứng minh
a) Tam giác AEB đồng dạng với Tam giác AFC. Viết tỉ số đồng dạng.
b) Tam giác AEF đồng dạng với Tam giác ABC.
Giúp Câu b với thanks
cho tam giác abc nhọn các đường cao ad và be cắt nhau tại h. qua a kẻ đường thẳng song song với bc, qua b kẻ đường thảng song song với ad, chứng cắt nhau tại m. a) tứ giác ambd là hình gì? chứng minh b) chứng minh tam giác ahe đồng dạng với tam giác bec, tam giác dec đồng dạng với tam giác abc
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
cho tam giác vuông tại a, đường cao ah, đường phân giác ad. kẻ dk vuông góc với ac( k thuộc ac)
1,cm tam giác abc đồng dạng tam giác hac
2, giả sử ab=6cm, ac = 8cm. tính độ dài đoạn bd
3, cm ac.ad=phương trình bật 2 ab.ck
Cho tam giác ABC nhọn hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh BH.HD = CH.HE
c) Chứng minh Chứng tam giác ADE đồng dạng tam giác ABC
d) Gọi F là giao điểm của AH và BC, K là trung điểm của AH. Chứng minh: BF.CF = KF2 – HD2
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc). a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ; b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ; c) chứng minh rằng ae=ab ; d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham