Xét ΔCMB vuông tại M và ΔCNA vuông tại N có
góc MCB chung
=>ΔCMB đồng dạng với ΔCNA
=>CM/CN=CB/CA
=>CM*CA=CN*CB
=>CP=CQ
Xét ΔCMB vuông tại M và ΔCNA vuông tại N có
góc MCB chung
=>ΔCMB đồng dạng với ΔCNA
=>CM/CN=CB/CA
=>CM*CA=CN*CB
=>CP=CQ
cho tam giác abc nhọn BM và AN là 2 đường cao trên BM , AN lấy P,Q sao cho tam giác QBC vuôg ở q , tam giác APC vuông ở P . chứng minh cp=cq
cho tam giác nhọn ABC, 2 đường cao BD và CE cắt nhau tại H, trên BH và CH lần lượt lấy điểm M và N sao cho góc AMC=góc ANB=90độ. CMR AM=AN
Cho tam giác ABC nhọn , đường cao BD và CE cắt nhau tại H. Gọi M,N là 2 điểm thuộc HB,HC sao cho góc AMC= góc ANB= 90 độ
a, chứng minh AB.AE=AC.AD
b, chứng minh tam giác AMN là tam giác cân
c, BE.CD + ED.BC = BD.CE
.
cho tam giác abc vuông tại a . đường cao ah , có ac=8, ch=6,4, tính bc , an . Diện tích tam giác ABC
Cho tam giác ABC nhọn có AH là đường cao. D và E lần lượt là hình chiếu của H trên AB,AC. Chứng minh rằng:
a, AD.AB = AE.AC
b, góc AED = góc ABC
Cho tam giác ABC nhọn có AH là đường cao kẻ HM vuông góc với AB tại M, HN vuông góc với AC tại N. Chứng minh AB.AM=AC.AN.
Cho tam giác ABC (AB<AC) có đường cao AH và đường phân giác AD. Trên cạnh AC, lấy 1 điểm E sao cho AE=AB. Nối BE cắt AH tại I.
a) Chứng minh \(\dfrac{HB}{HC}=\dfrac{IB^2}{IE^2}\)
b) Cho DB= 15cm, DC=20cm. Tính chu vi và diện tích của tứ giác AEDI
Bài 4. Cho đường tròn tâm O, đường kính AB = 10 cm và điểm C thuộc đường tròn sao cho AC=6 cm. Về CH vuông góc với AB tại H.
a) Chứng minh rằng tam giác ABC vuông tại C.
b) Tính HB và HC.
c) Trên tia đối của tia CA lấy điểm D sao cho CD= 2 cm. Gọi M là giao điểm của BD với đường tròn(M khác B). Chứng minh rằng CMD = CAB.
cho tam giác ABC vuông tại A , đường cao AH . Gọi D và E lần lượt là hình chiếu của D trên AB và AC . Chứng minh rằng DE2 = BD * CE*BC