a.Xét ΔDHC và ΔEHB có:
góc DHC=góc EHB(đối đỉnh)
góc CDH=góc BEH=90 độ
=>ΔDHC đồng dạng với ΔEHB
=>DH/EH=DC/EB=HC/HB
=>DH/EH=HC/BH
=>DH.BH=EH.HC
b)Ta có:DH/HE=CH/BH
=>HE/HB=HD/HC
Xét ΔHDE và ΔHCB có:
góc EHD=góc BHC(đối đỉnh)
HE/HB=HD/HC
=>ΔHDE đồng dạng với ΔHCB
c.Kẻ HK⊥BC
Xét ΔBKH và ΔBDC có:
góc B chung
góc BKH=góc BDC=90 độ
=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=KH/DC=BH/BC
=>BK/BD=BH/BC
=>BH/BD=BK/BC (1)
Xét ΔCKH và ΔCEB có:
góc C chung
góc CKH=góc CEB=90 độ
=>ΔCKH đồng dạng với ΔCEB
=>CK/CE=KH/EB=CH/CB
=>CH/CB=CK/CE
=>CH.CE=CK.CB(2)
Từ (1) và (2) ta suy ra:
BH.BD+CH.CE=BC^2
CHÚC BN HC TỐT!!!^^