Bài 2: Đường kính và dây của đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
đoàn ngọc hân

cho tam giác ABC nhon (AB<AC ) nội tiếp đường tròn tâm O .Các đường cao BD và CE cắt nhau tại H vẽ đường kính AM
chứng minh rằng
a, tứ giác BHCM là hình bình hành
b,gọi I là giao điểm của HM và BC chứng minh OI vuông góc vs BC

HELP ME TỐI PẢI NỘP RÙI

Nguyễn Lê Phước Thịnh
25 tháng 11 2022 lúc 22:18

a: Xét(O) có

ΔABM nội tiếp

AM là đường kính

Do đó: ΔABM vuông tại B

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tji C

=>CM//BH

Xét tứ giác BHCM có

BH//CM

BM//CH

DO đó: BHCM là hình bình hành

b: BHCM là hình bình hành

nên BC cắt HM tại trung điểm của mỗi đường

=>I là trung điểm của BC

Ta có: ΔOBC cân tại O

mà OI là đường trung tuyến

nên OI là đường cao


Các câu hỏi tương tự
vũ hoàng thiên lửa
Xem chi tiết
illumina
Xem chi tiết
misen
Xem chi tiết
Nguyễn Lame
Xem chi tiết
Phạm Văn Việt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạmm Dungg
Xem chi tiết
Đàm văn huy
Xem chi tiết
3 - Lâm Võ Phước Duy - 9...
Xem chi tiết