Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Tuấn

Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho KM=MA

a) CM tam giác ABM = tam giác KCM

b) CM BK // AC

c) Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE = AB ; CF =AC . CM K là trung điểm của EF

Trần Thị Tiến Linh
29 tháng 12 2016 lúc 21:40

Bạn tự vẽ hình ghi GT KL nhé.

Chứng minh

a) Xét tam giác ABM và tam giác KCM có:

AM=KM(gt)

Góc AMB=Góc KMC( đối đỉnh)

BM=CM(gt)

Do đó tam giác ABM=tam giác KCM(c-g-c)

b) Xét tam giác BMK và tam giác CMK có:

BM=CM(gt)

Góc AMC=Góc KMC

AM=KM(gt)

Do đó tam giác BMK=tam giác CMK(c-g-c)

Suy ra: Góc MBK=Góc MCA( 2 góc tương ứng)

Mà hai góc này ở vị trí so le trong

Vậy BK // AC

soyeon_Tiểubàng giải
29 tháng 12 2016 lúc 22:07

c) t/g BMK = t/g CMA (câu b)

=> BK = AC (2 cạnh tương ứng)

Xét t/g ABC và t/g BEK có:

AB = BE (gt)

BAC = EBK ( đồng vị)

AC = BK (cmt)

Do đó, t/g ABC = t/g BEK (c.g.c)

=> BC = EK (2 cạnh tương ứng) (1)

ABC = BEK (2 góc tương ứng)

Mà ABC và BEK là 2 góc ở vị trí đồng vị nên BC // EK (2)

t/g ABM = t/g KCM (câu a)

=> AB = CK (2 cạnh tương ứng)

ABM = KCM (2 góc tương ứng)

Mà ABM và KCM là 2 góc ở vj trí so le trong nên AB // CK

Xét t/g ABC và t/g CKF có:

AB = CK (cmt)

BAC = KCF ( đồng vị)

AC = CF (gt)

Do đó, t/g ABC = t/g CKF (c.g.c)

=> BC = KF (2 cạnh tương ứng) (3)

ACB = CFK (2 góc tương ứng)

Mà ACB và CFK là 2 góc ở vj trí đồng vị nên BC // KF (4)

Từ (1) và (3) => EK = KF

Từ (2) và (4) => E,K,F thẳng hàng

Như vậy K là trung điểm của EF (đpcm)


Các câu hỏi tương tự
Trần Nghiên Hy
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Trang Thiên
Xem chi tiết
Thanh Bình
Xem chi tiết
Trúc Hoàng Thị Thanh
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
lequangha
Xem chi tiết
tran huynh trieu man
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết