Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Nghiên Hy

Cho tam giác ABC, có AB=AC và M là trung điểm của BC. trên tia đối của tia BC lấy điểm D trên tia đối cả tia CB lấy điểm E sao cho BD=CE

a) c/m tam giác ABM=tam giác ACM từ đó suy ra AM vuông góc vs BC

b) c/m tam giác ABD = tam giác ACE từu đó suy ra AM là tia phân giác của góc DAE

c)) kẻ BK vuong góc vs AD(K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH= AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE. c/m góc MAD= góc MBH

d) chứng minh DN vuông góc vs DH

 

Aki Tsuki
12 tháng 12 2016 lúc 20:33

Ta có hình vẽ sau:

 

 

 

 

D E B M C 1 2 1 2 A

a) Vì AB = AC => ΔABC cân

=> \(\widehat{B_2}=\widehat{C_1}\)

Xét ΔABM và ΔACM có:

AB = AC (gt)

\(\widehat{B_2}=\widehat{C_1}\left(cmt\right)\)

BM = CM (gt)

=> ΔABM = ΔACM(c.g.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)

=> AM \(\perp\) BC(đpcm)

b) Ta có: \(\widehat{B_2}=\widehat{C_1}\)\(\widehat{B_1}+\widehat{B_2}=180^o;\widehat{C_1}+\widehat{C_2}=180^o\)

=> \(\widehat{B_1}=\widehat{C_2}\)

Xét ΔABD và ΔACE có:

AB = AC(gt)

\(\widehat{B_1}=\widehat{C_2}\left(cmt\right)\)

BD = CE (gt)

=> ΔABD = ΔACE(c.g.c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

\(\widehat{BAM}=\widehat{CAM}\) (ΔABM = ΔACM)

=> \(\widehat{BAD}+\widehat{BAM}=\widehat{CAE}+\widehat{CAM}\)

=> AM là tia p/g của \(\widehat{DAE}\) (đpcm)

 


Các câu hỏi tương tự
Trần Nghiên Hy
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
bịp Tên
Xem chi tiết
thành đạt nguyễn
Xem chi tiết
Trang Thiên
Xem chi tiết
phamquocviet
Xem chi tiết
♚Nguyễn  ♛ Trấn  ♜ Thành...
Xem chi tiết
Cathy Trang
Xem chi tiết