a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó; ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó; ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD
Cho tam giác nhon ABC (AB<AC) , gọi M là trung điểm của AC. Trên tia đối MB lấy điểm D sao cho MB = MD
a) chứng minh tam giác AMB bằng tam giác CMD
b) chứng tia AB = CD và AB//CD
c) trên tia DC lấy điểm E sao cho C là trung điểm DE . Chứng minh AC // BE
Cho tam giác ABC có AB<AC trên cạnh AC lấy điểm D sai cho AD=AB gọi M là trung điểm của đoạn thẳng BD
a) Chứng minh tam giác ABM = tam giác ADM
b) Tia AM cắt cạnh BC taị K chứng minh tam giác ABK và tam giác ADK
c) trên tia đối của tia BA lấy điểm E Sao cho BE=DC chứng minh 3 điểm E,KD thẳng hàng
Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC.
a, Chứng minh BE = CD
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
d) Chứng minh Dn vuông góc DH
Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC.
Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh: AM=AN.
Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC.
Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh: AM=AN.
1) Cho tam giác ABC có góc B = 2 lần góc c tia P. giác của Góc b cắt AC ở D trên tia đối của tia BD lấy điểm E sao cho BE = AC . Trên tia đối của tia CD lấy điểm K sao cho CK = AB . Chứng minh rằng : AE = AK
2) cho tam giác ABC các tia PG của góc B và C cắt tại O . Kẻ OD vuông với AD , OE Vuông với AD . Chứng minh rằng : OD = OE
3) cho tam giác ABC có AB = AC lấy điểm d trên cạnh AB . Điểm E trên cạnh AD , sao cho AD = AE Chứng minh rằng : BE = CD
Cho tam giác ABC (AB<AC) gọi M là trung điểm của BC. TRên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh tam giác ABM=tam giác DCM
b\) C/m AC//CD
c) trên nửa mặt phẳng bờ AD không chưas điểm B vẽ tia Ax//BC. trên tia Ax lấy điểm H sao cho AJH=Bc. chứng minh H,C,D thẳn hàng
1. Cho tam giác ABC vuông tại A . Gọi M là trung điểm cua AC, trên tia đối của tia MB ,lấy điểm D sao cho MD=MB. Dường thẳng qua B song song với AC cắt tia DCtại N. Chứng minh rằng ΔABM=ΔCNM