Cho tam giác ABC và 3 điểm A', B', C' lần lượt thuộc các cạnh BC, CA, AB sao cho AA', BB', CC' đồng quy (A', B', C' không trùng với các đỉnh của tam giác ). CM: \(\dfrac{A'B}{A'C}.\dfrac{B'C}{B'A}.\dfrac{C'A}{C'B}=1\)
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD
2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR
a) DM2=MN. MK
b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1
3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\).\(\dfrac{B'C}{B'A}\).\(\dfrac{C'A}{C'B}\)=1
4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ
5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF
Giả sử ba đường thẳng AA', BB', CC' đồng quy tại điểm O trong △ABC ( A'∈BC, B'∈CA, C'∈AB). Chứng minh rằng
OA/OA'=B'A/B'C+C'A/C'B.
Cho\(\Delta\)ABC trên các cạnh BC,CA,AB lần lượt lấy các điểm A’,B’,C’ sao cho BA’=2BC,CB’=2CA,AC’=2AB .Chứng minh tam giác ABC và A’B’C’ có cùng trọng tâm
Cho tam giác ABC, M thuộc BC, N thuộc AC sao cho BM/MC=2/3 ; CN/NA=3/5 , AM cắt BN tại O.
a) Tính tỉ số AO/AM
b) Lấy điểm P trên AB sao cho PB/BA=2/7 . Chứng minh: AM, BN, CP đồng quy
Cho tam giác ABC, qua 1 điểm nằm trong tam giác, kẻ BB' ( B' thuôc AC ), kẻ AA' ( A' thuôc BC ), kẻ CC' ( C' thuôc AB ).
Chứng minh rằng : BA'/A'C x B'C/AB' x AC'/C'B = 1
Cho tam giác ABC nhọn. Các đường cao AA', BB', CC', H là trực tâm.
a) Tính tổng HA'/AA'+HB'/BB'+HC'/CC'.
b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. CMR: AN.BI.CM=BN.IC.AM.
c) CMR: (AB+BC+CA)^2/AA'^2+BB'^2+CC'^2 lớn hơn hoặc bằng 4
/cho tam giác ABC, trên tia đối của tia AB, BC, CA lấy các điểm \(A_1,\)B1,C1 sao cho AA1=BC,BB1=CA,CC1=AB;
Cmr: \(S_{ABC_1}+S_{AB_1C}+S_{A_1BC}\ge6S_{ABC}\)