Tam giác ABC vuông ở A; AB=AC; M thuốc AC sao cho MC:MA=1:3. Kẻ đường vuông góc AC tại C cắt BM ở K; kẻ BE vuông góc với đường CK ở E
a. ABEC là hình gì?
b. CM: \(\dfrac{1}{AB^2}=\dfrac{1}{BM^2}+\dfrac{1}{BK^2}\)
Tam giác ABC vuông tại A có BC=20cm, AB=10cm
1. Giải tam giác ABC vuông và tính độ dài đường cao AH
2. Cminh: tgB, Sin B=\(\dfrac{HC}{AB}\)
3. Kẻ phân giác của góc BAC cắt BC tại I. Tính HI
* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN
* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC
Cho tam giác ABC nhọn, các đường cao AK, BD, CE cắt nhau tại H.
a) Chứng minh: \(\dfrac{KC}{KB}=\dfrac{AC^2+BC^2-AB^2}{BC^2+AB^2-AC^2}\)
b) Giả sử HK=\(\dfrac{1}{3}\).AK. Chứng minh: tanB.tanC=3.
c) Giả sử SABC=120cm2 và góc BAC bằng 600. Tính SADE.
Cho Tam giác ABC vuông tại A có AB=9 cm, BC=15, đường cao AH
a) Tính AH, CH
b) qua B vẽ đường thẳng vuông góc với BC cắt AC tại D. Tia phân giác của C cắt AB tại N và BD tại M. Chứng minh CN.CD=CM.CB
c) Chứng minh NA.CD=MD.CA
1) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 6cm, BC= 10cm
a)Tính BH, AH,\(\dfrac{AD}{AE}\)
b)CM: DE= BC. sinB.cosB
Bài 1: Cho hình vuông ABCD. Kẻ đường thẳng qua A cắt BC tại M và cắt CD tại I. CMR: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AI^2}\)
Bài 2: Cho ΔABC cân tại A có đường cao AH và BK. CMR: \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Bài 3: Cho ΔABC có \(\widehat{A}=60^0\), đường cao BD và CE. Gọi M là trung điểm của BC. CMR: ΔDEM là tam giác đều
1. Cho ABC là tam giác vuông tại A. Tìm các tỉ số lượng giác của góc B trong các trường hợp sau:
a) BC = 5 cm; AB = 3 cm;
b) BC = 13 cm; AC = 12 cm;
c) BC = 5V2 cm; AB = 5 cm;
d) AB = a v3; AC = a.
Cho tam giác ABC vuông tại A có AC=3cm, AB=4cm, BC=5cm. a)Chứng minh tam giác ABC vuông. Tính góc B và C b) Phân giác của góc A cắt BC tại D. Tính BD và CD.