\(2\overrightarrow{KA}+3\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{0}\)
\(\Rightarrow2\overrightarrow{MA}+3\overrightarrow{MB}+\overrightarrow{MC}=2\left(\overrightarrow{MK}+\overrightarrow{KA}\right)+3\left(\overrightarrow{MK}+\overrightarrow{KB}\right)+\left(\overrightarrow{MK}+\overrightarrow{KC}\right)=6\overrightarrow{MK}\)
Mà theo giả thiết thì ta có \(2\overrightarrow{MA}+3\overrightarrow{MB}+\overrightarrow{MC}=6\overrightarrow{MK}\Rightarrow\overrightarrow{MN}=6\overrightarrow{MK}\)
Từ đó suy ra M,N,K thẳng hàng. Mặt khác \(\left|\overrightarrow{MN}\right|=6\left|\overrightarrow{MK}\right|\) nên ta dễ thấy N cố định (Vì K cố định).