Tam giác ABC có H là trực tâm, O là giao điểm của ba đường . Kéo dài AO lấy DA' = OA
a) Tam giác ACA và tam giác ABA là tam giác gì ?
b) CM : BH = CA'
c) Gọi M là trung điểm của BC. CM 3 điểm H,M,A' thẳng hàng
d)Gọi G là trọng tâm của tam giác ABC. CM 3 điểm HMO thẳng hàng và HG = 2GO
tam giác ABC cân tại A có A=108 O là giao điểm của 3 đường trung trực ,I là giao điểm của các đường phân giác .CMR BC là đường trung trực của OI
Cho tam giác nhọn ABC (AB<AC), điểm M là trung điểm BC. Kẻ tia Ax//BM, trên tia Ax lấy điểm D sao cho: AD=BM(M và D khác phía đối với AB). Gọi I là trung điểm của AB.
a, CM: tam giác AID= tam giác BIM.
b,CM: tam giác AIM= tam giác BID, AM//BD.
c, Đường trung trực của BC cắt AC tại E, tia BE cắt đường thẳng Ax tại F.CMR:BE=AC
d, Hai đường thẳng AB và FC cắt nhau ở O. CMR: O,E,M thẳng hàng.
Cho góc nhọn xOy. Trên tia Ox, Oy lấy tương ứng 2 điểm A và B sao cho OA=OB. Vẽ đường tròn tâm A và đường tròn tâm B có cùng bán kính sao cho chúng cắt nhau tại 2 điểm M và N nằm trong góc xOy. Cmr:
a, Tam giác OMA= Tam giác OMB
Tam giác ONA= Tam giác ONB
b, 3 điểm O,M,N thẳng hàng
c, Tam giác AMN= Tam giác BMN
d, MN là tia phân giác của góc AMB
help me!!! Mai mk hok rùi
Cho tam giác nhọn ABC (AB<AC), điểm M là trung điểm BC. Kẻ tia Ax//BM, trên tia Ax lấy điểm D sao cho: AD=BM(M và D khác phía đối với AB). Gọi I là trung điểm của AB.
a, CM: tam giác AID= tam giác BIM.
b,CM: tam giác AIM= tam giác BID, AM//BD.
c, Đường trung trực của BC cắt AC tại E, tia BE cắt đường thẳng Ax tại F.CMR:BE=AC
d, Hai đường thẳng AB và FC cắt nhau ở O. CMR: O,E,M thẳng
các bạn giúp mình nhé mai mình phải nộp rồi
Cho tam giác ABC có AB < AC, đường cao AH . Gọi M là trung điểm của BC. Xác định D và E sao cho H là trung điểm của AD, M là trung điểm của AE. CMR :
a, BD=CE
b, BC là tia phân giác của góc ABD
c, BC là đường trung trực của AD
Cho ∆ABC cân tại A. Gọi G là trọng tâm, O là giao điểm của hai đường trung trực cạnh AB, AC. Chứng minh rằng:
a) ∆BOC cân
b) Ba điểm A, O, G thẳng hàng
Cho tam giác ABC gọi D, E lần lượt là trung điểm của các cạnh AB, AC. Lấy điểm H, G sao cho D là trung điểm của HC, E là trung điểm của BC. C/m H, A, G thẳng hàng.
Cho tam giác ABC, đường cao AH, đường thẳng qua H song song với AB cắt AC tại K, BK cắt AH tại G. Gọi I là trung điểm của AB. Chứng minh: a) G là trọng tâm tâm giác ABC b) ba điểm I, G, C thẳng hàng c) KI là đường trưng trực của AH