Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

§3. Tích của vectơ với một số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Rick Cu

cho tam giác ABC gọi D,I là các điểm đc xác định bởi

3DB - 2DC= 0

IA + 3IB -2IC = 0

a, biểu diễn AD theo hai vector AB và AC 

b, chứng minh ba điểm I, A, D thẳng hàng   

Rick Cu
17 tháng 8 2016 lúc 14:07

@Hoàng Lê Bảo Ngọc giúp tớ giải cái đi ạ

Rick Cu
17 tháng 8 2016 lúc 14:14

@Bảo Duy Cute giải giúp giùm tớ với ạ

 

Rick Cu
17 tháng 8 2016 lúc 14:27

@Nguyen Thi Anh giúp tớ giải nhanh bài toán có đc ko ạ

Thị Mỹ Hạnh Võ
20 tháng 8 2016 lúc 19:42

a/ \(3\overrightarrow{AB}-2\overrightarrow{AC}=\overrightarrow{AD}\)

b/ \(\overrightarrow{AI}=\frac{3}{2}\overrightarrow{AB}-\overrightarrow{AC}\)

lại có \(\overrightarrow{AD}=3\overrightarrow{AB}-2\overrightarrow{AC}=2.\left(\frac{3}{2}\overrightarrow{AB}-\overrightarrow{AC}\right)=2\overrightarrow{AI}\)

nê A. I. D thẳng hàng.

( mình chỉ giải tóm tắt thế thôi, chi tiết hơn bạn cố gắng làm nhé )

Lê Thu Dương
13 tháng 10 2020 lúc 23:08

a) Ta có:

\(3\overrightarrow{DB}-2\overrightarrow{DC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{DA}+3\overrightarrow{DB}-2\overrightarrow{DA}-2\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{DA}=2\overrightarrow{AC}-3\overrightarrow{AB}\)

\(\Leftrightarrow\overrightarrow{AD}=3\overrightarrow{AB}-\overrightarrow{2AC}\left(1\right)\)

b) \(\Leftrightarrow\overrightarrow{IA}+3\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{IA}+3\overrightarrow{IA}+3\overrightarrow{AB}-\overrightarrow{IA}-\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow4\overrightarrow{IA}=\overrightarrow{-3AB}+\overrightarrow{AC}\)

hay \(4\overrightarrow{AI}=3\overrightarrow{AB}-\overrightarrow{AC}\left(2\right)\)

Từ 1 và 2

\(\Rightarrow AD=4AI\)

\(\Rightarrow\) I nằm giữa A và D. Hay A,I,D Thẳng hàng

Khách vãng lai đã xóa

Các câu hỏi tương tự
Vy Lê
Xem chi tiết
Giang Đặng Nguyễn thu
Xem chi tiết
trọng nguyễn
Xem chi tiết
na na
Xem chi tiết
Nam Trần
Xem chi tiết
Trần Độ
Xem chi tiết
10A6-01- LeQuynhAnh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Trần Thị Anh Thư
Xem chi tiết