Cho tam giác ABC . Trên cạnh AB lấy điểm M . Trên cạnh AC lấy điểm N sao cho AM = 6 cm , BM = 4 cm , AN = 15 cm , CN = 10 cm
a, Chứng minh : MN // BC
b, Gọi K là trung điểm của BC , I là giao điểm của AK với MN . Chứng minh : I là trung điểm MN
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
Cho tam giác ABC cân ở A. Lấy điểm D trên cạnh AB, E thuộc AC sao cho AD = CE. Gọi I là trung điểm của DE, K là giao điểm của AI và BC. Cmr ADKE là hình bình hành
Gợi ý : Chứng minh I là trung điểm của AK. Kẻ IP song song vs BC, DQ song song vs BC. Lưu ý : AE=BD
Cho tứ giác lồi ABCD. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho MA=kMB, ND=k.NC( k là 1 số thực dương). Gọi P, Q, R theo thứ tự là các trung điểm của các đoạn thẳng AD, BC,MN.
a) CHứng minh: 3 điểm P, Q, R thẳng hàng.
b) So sánh RP/RQ=MA/MB
Cho tam giác ABC có các trung điểm của BC, CA, AB theo thứ tự là D, E, F. Trên cạnh BC lấy điểm M và N sao cho BM = MN = NC. Gọi P là giao điểm của AM và BE; Q là giao điểm của CF và AN. Chứng minh rằng:
a) F, P, D thẳng hàng; D, Q, E thẳng hàng.
b) Tam giác ABC đồng dạng với tam giác DQP
Cho tam giác ABC có các trung điểm của BC, CA, AB theo thứ tự là D, E, F. Trên cạnh BC lấy điểm M và N sao cho BM = MN = NC. Gọi P là giao điểm của AM và BE; Q là giao điểm của CF và AN. Chứng minh rằng:
a) F, P, D thẳng hàng; D, Q, E thẳng hàng.
b) Tam giác ABC đồng dạng với tam giác DQP