Cho tam giác ABC vuông tại A, AB < AC; AD là phân giác, Vẽ DE⊥AB tại E, DF⊥AC tại F.
a) Tứ giác AEDF là hình gì?
b) Qua D, vẽ đường thẳng m ⊥ BC, m cắt AC tại K. Chứng minh: DK = DB
Please cho mình cả hình nữa ạ. Help me pleaseeeee
Cho tam giác ABC vuông tại A có AB<AC, đường cao AH. Trên tia AB lấy điểm D sao cho AD=AC. Gọi E là giao điểm của AH và CD. Lấy điểm K trên đoạn EC sao cho EK=ED. Qua K kẻ đường vuông góc với BC, cắt AC ở I. CM : AI=AB
P/s : giúp mình với !!! chiều mình nộp bài rồi.... toán nâng cao 8
Cho tam giác ABCvuông tại A có N,M,E lần lượt là trun điểm của AB,AC,BC trên tia đối của tia MB lấy điểm F sao cho MF=MB.
a/ Chứng minh tứ giác ABCF là hình bình hành.
b/ Trên đoạn AF lấy điểm D sao cho AD=CE. Chứng minh tứ giác AECD là hình thoi.
c/ Qua B vẽ đường thẳng vuông góc với BC, cắt đường thẳng CA tại I. chứng minh IN vuông góc với BM
Cho tam giác ABC vuông tại A , đường cao AH. Gọi I là trung điểm cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N. Tính góc MHN ( giúp mk nha , mk đang cần gấp lắm )
Bài 5. Cho tam giác ABC nhọn (AB<AC). Trên cạnh AB, AC lấy các điểm D và E sao cho BD =
CE. Gọi M, N, P, Q là trung điểm các cạnh BC,CD,DE,BE.
1) Chứng minh tứ giác MNPQ là hình thoi.
2) Đường thẳng MP cắt cạnh AC tại F.Chứng minh AB+AF = CF và MP song song với phân
giác của góc BAC
3) Đường thẳng NQ cắt AB, AC tại H,K. Chứng minh tam giác AHK cân tại A
giúp câu bc vs ạ
cho tam giác abc vuông ở a(ab<ac) . kẻ ah vuông góc với bc tại m. trên tia hc lấy điểm d sao cho hd=hb. gọi p,q theo thứ tự là hình chiếu của d trên ac, ab
a) cmr: tứ giác apdq là hcn
b)gọi k là giao điểm của ad và pq. cmr: hk=1/2ad
c) đường thắng dp giao ah tại e vẽ hcn abgc. cmr tứ giác begc là hình thang cân
cho tam giác ABC vuông tại A,trung tuyết AD .kẻ DM vuông góc với AB (M thuộc AB) kẻ DN vuông góc với AC (N thuộc AC )
a. tứ giác ANDM là hình gì ? vì sao ?
b. trên tia đối của tia ND lấy điểm E sao cho ND = NE .chứng minh AECD là hình thoi
c.l tam giác ABC có điều kiện gì để tam giác ANDM là hình vuông
Bài 1: Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB, AC.
a)Chứng minh MN // BC
b)Gọi D là điểm bất kỳ thuộc cạnh BC ( D khác B,C), AD cắt MN tại I. Chứng
minh I là trung điểm của AD.
Bài 2: Cho tam giác ABC cân tại A, M là trung điểm của BC. Kẻ Mx// AC cắt AB tại E, kẻ My// AB cắt AC tại F. Chứng minh rằng:
1)E,F là trung điểm của AB, AC
2) FE = 1/2 BC
3) ME=MF, AE=FA
Bài 1: Cho tam giác ABC cân tại A, đường cao AM, N là trung điểm của AC. Qua A kẻ đường thẳng song song với BC cắt MN tại E. CMR:
a, M là trung điểm của BC
b, ME//AB
c, AE = MC
Bài 2: Cho tam giác ABC. Trên cạnh AC lấy 2 điểm D và E sao cho AD = DE = EC, M là trung điểm của BC, BC cắt AM tại I. CMR:
a, ME//BD
b, I là trung điểm của AM
c, BD = 4 ID