Giải:
a) Ta có: \(AG=\frac{2}{3}AD\Rightarrow\frac{1}{2}AG=\frac{1}{2}.\frac{2}{3}AD\Rightarrow IG=\frac{1}{3}AD\)
\(GD=\frac{1}{3}AD\) ( tính chất đường trung tuyến )
\(\Rightarrow IG=GD\)
\(GB=\frac{2}{3}BE\Rightarrow\frac{1}{2}GB=\frac{1}{2}.\frac{2}{3}BE\Rightarrow KG=\frac{1}{3}BE\)
\(GE=\frac{1}{3}BE\) ( tính chất đường trung tuyến )
\(\Rightarrow GE=KG\)
Xét \(\Delta IKG,\Delta DEG\) có:
IG = GD ( cmt )
\(\widehat{IGK}=\widehat{EGD}\) ( đối đỉnh )
\(GK=GE\) ( cmt )
\(\Rightarrow\Delta IKG=\Delta DEG\left(c-g-c\right)\)
\(\Rightarrow IK=DE\) (
\(\Rightarrow\widehat{IKG}=\widehat{GED}\) ( góc t/ứng ) ( đpcm )
Mà 2 góc trên ở vị trí so le trong
\(\Rightarrow\)IK // DE ( đpcm )
b) Theo tính chất đường trung tuyến
\(\Rightarrow AG=\frac{2}{3}AD\left(đpcm\right)\)
Vậy...