Cho tam giác ABC, đường trung tuyến AM. Gọi O là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB và AC. Gọi AA', BB', CC' là các đường vuông góc kẻ từ A, B, C đến đường thẳng d.
Chứng minh rằng :
\(AA'=\dfrac{BB'+CC'}{2}\)
Bài 2: Cho tam giác ABC , đường trung tuyến AM, trọng tâm G . Vẽ đường thẳng d đi qua G, cắt các cạnh AB, AC . Gọi A’, B’, C’, M’ lần lượt là hình chiếu của các điểm A, B, C, M trên đường thẳng d. Chứng minh a/ BB’+CC’=2MM’ b/ AA’=BB’+CC’.
Câu 1: Cho tam giác ABC có trung tuyến AM gọi G là trọng tâm của tam giác.Qua G kẻ đường thẳng D cắt AB và AC . Gọi AA', BB', CC', MM' là các đường vuông góc kẻ từ A,B đến đường thẳng D. Chứng minh
a) MM'=BB'+CC'/ 2
b) AA'=BB'+CC'
giúp mình vs các bạn .
Cho tam giác ABC, D là trung điểm của trung tuyến AM. Qua D vẽ đường thẳng xy cắt 2 cạnh AB và AC. Gọi A', B', C' lần lượt là hình ciếu của A,B,C. CMR: AA' = \(\dfrac{BB'+CC'}{2}\)
cho tam giác ABC qua trung điểm O của đường trung tuyến AM kẻ đường thẳng d sao cho B' nằm cùng phí với D gọi A,A',B,B',C,C' là các dường vuông góc A,B,C đến D chứng minh BB'+CC'=2AA'
Cho ABC , qua trọng tâm của tam giác kẻ đường thẳng d sao cho B và C nằm cùng phía đối với d. Gọi AA’; BB’; CC’ là các đường vuông góc kẻ từ A, B, C đến đường thẳng d. CMR: AA’ = BB’ + CC’
Cho tam giác ABC có trung tuyến AM . Vẽ đường thẳng d qua trung điểm I của AM cắt các cạnh AB và AC . Gọi A' , B' , C' lần lượt là hình chiếu của A , B , C trên đường thẳng d
a ) Tứ giác BB'C'C là hình gì ?
b) Kẻ MM' vuông góc d tại M' . Cm : MM' là đường trung bình của hìn thang BB'C'C
c) Cm : AA' = \(\dfrac{BB'+CC'}{2}\)
Cho tam giác ABC. Qua trọng tâm G kẻ đường thẳng d. Sao cho B và C nằm cùng phía đối với d. Gọi AA' , BB', CC' là các đường vuông góc. Kẻ từ A, B, C đến đường thẳng d. CMR : AA' = BB' + CC'
Cho tam giác ABC, đường trung tuyến AM. Qua O là trung điểm của Am, vẽ đường thẳng xy sao cho B, C thuộc cùng một nửa mặt phẳng bờ xy. Gọi A', B', C' lần lượt là hình chiếu của A, B, C.
CMR: \(AA'=\dfrac{BB'+CC'}{2}\)