Cho tam giác đều ABC, đường cao AH. Trên tia HC lấy điểm D sao cho AH=DH. Trên nửa mặt phẳng không chứa A có bờ là BD vẽ tia Dx sao cho góc BDx có số đo bằng 15o. Dx cắt tia AB tại E. Chứng minh EH=DH.
Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H
a) Tính số đo góc HAB
b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H
a) Tính số đo góc HAB
b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
Cho tam giác ABC vuông tại A, AB<AC , đường cao AH . Trên tai HC lấy điểm D sao cho HB=HD
a) Chứng minh: Tam giác ABH=Tam giác ADH
b)Trên tai đối của tia HA lấy điểm E sao cho HA=HE. C/minh :Tam giác DAE can
c) C/m: BC-BD>AC-AB
d) Kẻ CK vuông với AD tại K . C/m: AH,BE,CK đồng quy.
Cho tam giác ABC, trên nửa mặt phẳng bờ AC chứa điểm B, vẽ tia Ax vuông góc với AC, trên Ax lấy điểm D sao cho AD=AC. Trên nửa mặt phẳng bờ AB chứa điểm C, dựng tia Ay vuông góc với AB, trên Ay lấy điểm E sao cho AE=AB. Gọi AH là chiều cao tam giác ABC, chứng minh rằng AH đi qua trung điểm I của DE.
Cho tam giác ABC có B=100o. D là điểm trên tia đối của tia BC. Vẽ tia Dx sao cho các góc BDX và ABD so le trong và BDx=80o. Chứng minh rằng AB // Dx
Cho tam giác ABC có A < 90, Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ tia Ax vuông góc với tia AB và lấy trên tia Ax điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B,vẽ tia Ay vuông góc với tia AC và lấy trên Ay điểm E sao cho AE = AC. Chứng minh rằng:
a, BE = CD
b, BE vuông góc với CD
1.Cho ΔABC cân tại A (góc A < 90º); các đường cao BD; CE (D ⊥ AC; E ⊥ AB) cắt nhau tại H
a) Chứng minh ΔABD = ΔACE
b) Chứng minh ΔBHC là tam giác cân
c) So sánh HB và HD
d) Trên tia đối của tia EH lấy điểm N sao cho NH < HC; Trên tia đối của tia DH lấy điểm M sao cho MH = NH . Chứng minh các đường thẳng BN; AH; CM đồng quy
Cho tam giác ABC có 3 góc đều nhọn, đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a) Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b) Chứng minh CA = CD và BD = BA
c) Cho góc ACB = 45 độ. Tính góc ADC
d) Đường cao AH phải thêm điều kiện gì thì AB //CD.
cÓ THỂ CHỈ VẼ HÌNH VÀ LÀM CÂU d) ạ
giúp mình với. cảm ơn các bạn nhiều