Ủa biểu thức là \(\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\) hay \(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) em? Vì vecto không có khái niệm min max, chỉ độ dài vecto mới có min, max thôi
Ủa biểu thức là \(\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\) hay \(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) em? Vì vecto không có khái niệm min max, chỉ độ dài vecto mới có min, max thôi
Cho tam giác ABC và một đường thảng d và (T,R) cố định . Tìm M trên đường thẳng d và (t,R) sao cho \(|\overrightarrow{MA}-\overrightarrow{MB}+5\overrightarrow{MC}|\) nhỏ nhất
Cho tam giác ABC và điểm M thỏa \(\overrightarrow{MA-}\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)Mệnh đề nào sau đây đúng ?
A. M là trung điểm BC
B. M là trung điểm AB
C. M là trung điểm AC
D. ABMC là hình bình hành.
Cho tam giác ABC cố định và G là trọng tâm tam giác. Tập hợp điểm M thỏa \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) vs a<0 là:
A. Trung điểm BC
B. Đường tròn tâm G , bán kính bằng a.
C. Đường tròn tâm G , bán kính bằng \(\dfrac{a}{3}\)
D. Đường tròn tâm M, bán kính bằng \(\dfrac{a}{3}\)
Cho hình chữ nhật ABCD cố định tâm O và điểm M thỏa \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)
Mệnh đề nào sau đây đúng ?
A. M là trọng tâm tam giác ABD
B. M là trung điểm OA
C. ABMD là hình bình hành
D. M là trung điểm OC
Mong mọi người giúp đỡ ạ
Cho \(\Delta ABC\), gọi M là trung điểm của AC và N là điểm đối xứng của B qua M. Xác định các vecto sau:
a, \(\overrightarrow{AB}+\overrightarrow{AN}\)
b, \(\overrightarrow{BA}+\overrightarrow{CN}\)
c, \(\overrightarrow{AB}+\overrightarrow{MC}+\overrightarrow{MN}\)
d, \(\overrightarrow{BA}+\overrightarrow{BC}-\overrightarrow{MN}\)
Can you help me?
please, luv u (tymtymtym)
Cho tam giác ABC và một điểm M tùy ý. Hãy chọn hệ thức đúng:
a, \(2\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{AC}+2\overrightarrow{BC}\)
b,\(2\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=2\overrightarrow{AC}+\overrightarrow{BC}\)
C, \(2\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=2\overrightarrow{CA}+\overrightarrow{CB}\)
D,\(2^{ }\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=2\overrightarrow{CB}-\overrightarrow{CA}\)
Cho tam giác ABC
1/ Xác định I sao cho \(\overrightarrow{IB}+\overrightarrow{IC}-\overrightarrow{IA}=0\)
2/ Tìm điểm M thỏa mãn \(\overrightarrow{MA}-\overrightarrow{MB}+2\overrightarrow{MC=0}\)
1) Cho tam giác ABC đều cạnh 5. M là trung điểm BC. I là trung điểm AM. Tính \(\left|\overrightarrow{BI}+\overrightarrow{CI}\right|\)
2) Cho tam giác ABC đều cạnh 7. G là trọng tâm. M là trung điểm AB. Tính \(\left|\overrightarrow{AG}+\overrightarrow{AM}\right|\)
3) Cho ngũ giác đều ABCDE nội tiếp (O). Tính \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}\)
Cho tam giác vuông ABC vuông tại A ; AC = 2AB. Gọi H là chân đường cao kẻ từ A của tâm giác ABC. Biết \(\overrightarrow{AH}\)= m\(\overrightarrow{AB}\)+k\(\overrightarrow{AC}\) . Giá trị của biểu thức S = 10m + 2020k bằng:
A. 1618
B. 1350
C. 680
D. 412