Đặt \(AB=a\Rightarrow AC=2a\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=a\sqrt{5}\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{a^2}{a\sqrt{5}}=\dfrac{a\sqrt{5}}{5}=\dfrac{1}{5}.a\sqrt{5}\)
\(\Rightarrow BH=\dfrac{1}{5}BC\Rightarrow\overrightarrow{BH}=\dfrac{1}{5}\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}+\dfrac{1}{5}\overrightarrow{BC}=\overrightarrow{AB}+\dfrac{1}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}-\dfrac{1}{5}\overrightarrow{AB}+\dfrac{1}{5}\overrightarrow{AC}\)
\(=\dfrac{4}{5}\overrightarrow{AB}+\dfrac{1}{5}\overrightarrow{AC}\)
\(\Rightarrow\left\{{}\begin{matrix}m=\dfrac{4}{5}\\k=\dfrac{1}{5}\end{matrix}\right.\) \(\Rightarrow S=\dfrac{10.4}{5}+\dfrac{2020.1}{5}=412\)