Cho tam giác ABC có H là trực tâm . O là tâm đường tròn ngoại tiếp . Gọi B' là điểm đối xứng của B qua O. CM: \(\overrightarrow{AH}=\overrightarrow{B'C}\)
Cho \(\Delta\)ABC có trọng tâm G. Gọi I là điểm đối xứng với B qua G, M là trung điểm của BC. Phân tích \(\overrightarrow{CI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho tam giác vuông ABC vuông tại A ; AC = 2AB. Gọi H là chân đường cao kẻ từ A của tâm giác ABC. Biết \(\overrightarrow{AH}\)= m\(\overrightarrow{AB}\)+k\(\overrightarrow{AC}\) . Giá trị của biểu thức S = 10m + 2020k bằng:
A. 1618
B. 1350
C. 680
D. 412
Cho tam giác ABC cố định và G là trọng tâm tam giác. Tập hợp điểm M thỏa \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) vs a<0 là:
A. Trung điểm BC
B. Đường tròn tâm G , bán kính bằng a.
C. Đường tròn tâm G , bán kính bằng \(\dfrac{a}{3}\)
D. Đường tròn tâm M, bán kính bằng \(\dfrac{a}{3}\)
1) Cho tam giác ABC đều cạnh 5. M là trung điểm BC. I là trung điểm AM. Tính \(\left|\overrightarrow{BI}+\overrightarrow{CI}\right|\)
2) Cho tam giác ABC đều cạnh 7. G là trọng tâm. M là trung điểm AB. Tính \(\left|\overrightarrow{AG}+\overrightarrow{AM}\right|\)
3) Cho ngũ giác đều ABCDE nội tiếp (O). Tính \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}\)
Cho hình chữ nhật ABCD cố định tâm O. Tập hợp điểm M thỏa
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=a\right|\)
Với a>0 là:
A. Đường trung trực của đoạn BC
B. Đường tròn tâm O, bán kính bằng a.
C. Đường tròn tâm A, bán kính bằng \(\dfrac{a}{4}\)
D. Đường tròn tâm O, bán kính bằng \(\dfrac{a}{4}\)
\(\dfrac{a}{4}\)\(\dfrac{a}{4}\)
Cho \(\Delta ABC\), gọi M là trung điểm của AC và N là điểm đối xứng của B qua M. Xác định các vecto sau:
a, \(\overrightarrow{AB}+\overrightarrow{AN}\)
b, \(\overrightarrow{BA}+\overrightarrow{CN}\)
c, \(\overrightarrow{AB}+\overrightarrow{MC}+\overrightarrow{MN}\)
d, \(\overrightarrow{BA}+\overrightarrow{BC}-\overrightarrow{MN}\)
Can you help me?
please, luv u (tymtymtym)
Cho ba điểm A,B,C cố định thẳng hàng theo thứ tự đó. Đường tròn tâm O di động luôn đi qua B, C. kẻ qua A các tiếp tuyến AE, AF đến đường tròn tâm O. Gọi E,F là hai tiếp điểm . Gọi I là trung điểm của BC và K là giao của FI với đường tròn tâm O. CMR: véc tơ EK và véc tơ AB cùng phương
Cho hình chữ nhật ABCD cố định tâm O và điểm M thỏa \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)
Mệnh đề nào sau đây đúng ?
A. M là trọng tâm tam giác ABD
B. M là trung điểm OA
C. ABMD là hình bình hành
D. M là trung điểm OC
Mong mọi người giúp đỡ ạ