Cho tam giác ABC vuông tại A, tiếp điểm của đường tròn nội tiếp với cạnh huyền chia cạnh huyền thành 2 phần có độ dài 9 cm và 4cm. Tính diện tích tg ABC, hãy tổng quát bài toán trên
cho tam giác đều ABC nội tiếp đường tròn (O;R).gọi (O') là đường tròn tiếp xúc trong với đường tròn (O) và tiếp xúc hai cạnh AB,AC theo thứ tự tại M và N
a, CMR 3đ O,M,N thẳng hàng
b,tính bán kính của (O') theo R
cho tam giác ABCvuông tai A đường cao AH chia cạnh huyền BC thành 2 đoạn BH=3,6cn và
HC= 6,4cm trên cạnh AC lấy điểm M (M≠A,M≠C) kẻ AD vuông góc với MB tại D
1,TÍNH AB . AC .GÓC B .GÓC C(làm tròn đến phút)
2 cm BD*BM=BH*BC
3 CM 4 điểm A B C D cùng thuộc 1 đường tròn. CM AC là tiếp tuyến của đường tròn đó
Cho tam giác đều ABC có cạnh bằng 4cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC
Cho tam giác đều ABC có cạnh bằng 4cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi
cho tam giác ABC vuông tại A cạnh BC = 5cm và tỉ số hai hình chiếu của AB, AC trên cạnh huyền \(\dfrac{9}{16}\) . Tính din tích tam giác ABC
Cho tam giác ABC nội tiếp đường tròn (O). I là trung điểm , M là điểm nằm trên đoạn CI ( M khác C và I , đường thẳng AM cắt đường tròn (O) tại điểm D. Tiếp tuyến của đường tròn ngoại tiếp tam giác AMI tại M cắt đường thẳng BD, CD lần lượt tại P và Q. Chứng minh rằng DM.AI = MP.IC và tính tỉ số \(\dfrac{MP}{MQ}\) .
cho tam giác ABC nội tiếp đường tròn O,đường tròn K tiếp xúc trong vs đtròn O tại T và tiếp xúc 2 cạnh AB,AC tại E,F chưng minh tâm I đtròn nội tiếp tam giác ABC là trung điểm EF