DE//AC
Theo định lí Ta-lét, ta có:AE/AB=CD/CB(1)
DF//AB
Theo định lí Ta-lét, ta có:AF/AC=BD/BC(2)
Cong ca 2 ve tuong ung (1) va (2) ta duoc:
AE/AB + AF/AC = CD/CB + BD/BC = CD+BD/BC = BC/BC = 1
DE//AC
Theo định lí Ta-lét, ta có:AE/AB=CD/CB(1)
DF//AB
Theo định lí Ta-lét, ta có:AF/AC=BD/BC(2)
Cong ca 2 ve tuong ung (1) va (2) ta duoc:
AE/AB + AF/AC = CD/CB + BD/BC = CD+BD/BC = BC/BC = 1
cho tam giac abc, trung tuyen am. gio g la trong tam cua tam giac abc. qua g ke cac duong thang song song voi ab va ac, cat bc theo thu tu tai d va e. a, tinh va so sanh cac ti so bd/bm va ce/cm tu do suy ra bd=ce. b, chung minh bd=de=ce
cho tu giac ABCD, duong thang ke qua giao diem cua 2 duong cheo cat AB va CD theo thu tu o M va N. duong thang qua M // CD cat AC o E, duong thang qua N // AB cat BD o F. chung minh BE // CF
cho hbh ABCD lay E thuoc duong cheo AC qua E ke 1 dg thang cat AD,BC lan luot tai M,N . Qua E ve duong thang cat 2 canh AB,CD lan luot tai I,K . Chung minh MI//KN
lm giup mk vs . Thks
Cho hình thang ABCD. M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC. Chứng minh:
a, EF // AB
b, Duong thang EF cat AD va BC lan luot tai H va N . Chung minh : HE =EF=FN
c ,Cho : AB = 7,5 cm ; BC = 12 cm . Tinh HN
Bài 1: Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho DB/DC = 1/2. Đường thẳng qua D song song với AB cắt AC tại E; Đường thẳng qua D song song AC cắt AB tại Fa) So sánh các tỉ số AF/AB; AE/AC.
b) Gọi M là trung điểm của AC. CMR: EF// BM.
Cho tam giác ABC. D thuộc BC, từ D kẻ các đường thẳng DE, DF lần lượt song song với AC, AB \(\left(E\in AB,F\in AC\right)\). Chứng minh rằng: \(\dfrac{AE}{AB}+\dfrac{AF}{AC}=1\)
Giúp mk vs!!!
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
Cho tam giác ABC , từ điểm D trên cạnh BC kẻ các đường thẳng song song với các cạnh AB và AC , chúng cắt các cạnh AB và AC theo thứ tự tại E và F . Chứng minh rằng AF/AB + AE/AC = 1
Qua một điểm O tùy ý ở trong tam giác ABC kẻ đường thẳng song song với AB, cắt AC và BC tại D và E , đường thẳng song song với AC cắt AB và BC tại F và K , đường thẳng song song với BC cắt AB và AC tại M và N . CM:
AF: AB + BE: BC+CN:CA= 1