Bài 1: Định lý Talet trong tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Linh

Cho tam giác ABC. D thuộc BC, từ D kẻ các đường thẳng DE, DF lần lượt song song với AC, AB \(\left(E\in AB,F\in AC\right)\). Chứng minh rằng: \(\dfrac{AE}{AB}+\dfrac{AF}{AC}=1\)

Giúp mk vs!!!

Huyền Anh Kute
4 tháng 2 2018 lúc 20:27

Hình pạn tự vẽ nha!!!

Bài Làm:

Xét \(\Delta ABC\)\(DE//AC\left(gt\right)\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{CD}{CB}\left(1\right)\) ( Theo định lí Ta - lét )

Lại có: \(DF//AB\left(gt\right)\)

\(\Rightarrow\dfrac{AF}{AC}=\dfrac{BD}{CB}\left(2\right)\) ( Theo định lí Ta - lét )

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{CD}{CB}+\dfrac{BD}{CB}\)

\(\Leftrightarrow\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{CD+DB}{CB}=\dfrac{CB}{CB}=1\)

Chúc pạn hok tốt!!!


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Jang đzai :33
Xem chi tiết
Lê Thiên Hương
Xem chi tiết
Hoàng Chi
Xem chi tiết
Trung Tranxuan
Xem chi tiết
Phạm Xuân Tùng
Xem chi tiết
Lê Thiên Hương
Xem chi tiết