Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Vũ Anh Thư

Cho tam giác ABC. D là trung điểm của AB, E là trung điểm của AC. Gọi O là 1 điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, điểm N đối xứng với O qua E. CMR: MNCB là hình bình hành.

Akai Haruma
18 tháng 9 2018 lúc 23:35

Lời giải:

Xét tam giác $ABC$ có $D$ là trung điểm $AB$, $E$ là trung điểm của $AC$ nên $DE$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

Do đó: \(\left\{\begin{matrix} DE=\frac{1}{2}BC\\ DE\parallel BC\end{matrix}\right.(1)\)

Do $M,N$ đối xứng với $O$ lần lượt qua $D,E$ nên $D,E$ là trung điểm của $OM,ON$ (theo thứ tự)

Suy ra $DE$ là đường trung bình của tam giác $OMN$ ứng với cạnh $MN$

\(\Rightarrow \left\{\begin{matrix} DE=\frac{1}{2}MN\\ DE\parallel MN\end{matrix}\right.(2)\)

Từ (1);(2) suy ra \(BC=MN; BC\parallel MN\), chứng tỏ $MNCB$ là hình bình hành (2 cặp cạnh đối song song và bằng nhau)


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết