Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:

1) ĐIểm O cách đều ba đỉnh của tam giác ABC.

2) (AB+CF)^2<(AC+BE)^2.

Suzanna Dezaki
14 tháng 2 2021 lúc 9:37

1) Ta có: BH vuông góc với AC

               CK vuông góc với AC

      => BH//CK

Chứng minh tương tự ta có: CH//Bk

Xét tứ giác BHCK có:    BH//CK

                                     CH//BK

=> Tứ giác BHCK là hbh

Có M là trung điểm của BC=> M là trung điểm của HK=>M,H,K thẳng hàng

2.gọi HI cắt BC tại J

Xét tam giác HIK có:  J là trung điểm của HI

                                   M là trung điểm của HK

=> JM là đường trung bình trong tam giác HIK

=> IK//MJ hay IK//BC

Xét tam giác BHJ và tam giác BIJ có;

                HJ=JI

       góc BJH=góc BJI=90

              BJ chung

=> Tam giác BHJ = tam giác BIJ

=> Góc HBJ= góc IBJ

Mà góc HBJ= góc BCK( do BH//CK)

Xét tứ  giác BIKC có:

           KI//BC

góc IBC= góc KCB

=>Tứ giác BIKC là hình thang cân

3.Xét tứ giác GHCK có:     GK//HC  (doBK//HC)

=> Tứ giác GHCK là hình thang

Để GHCK là hình thang cân<=>góc GHC= góc KCH(1)

mà GHC+HCB=90

      KCH+HCA=90

=> (1)<=> góc HCB=góc HCA=> CH là phân giác của góc ACB

Xét tam giác ABC có : CH là phân giác của góc ACB

                                   CH là đường cao trong tam giác ABC

=> Tam giác ABC cân tại C

Vậy tứ giác GHCK là hình thang cân<=> Tam giác ABC cân tại C

imagerotate

Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết